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Problem setting

We’ve been working on algorithms for group sparse regression.
This a setting where there is group structure in the data.

Occurs for example in

▶ genomics: where allele frequencies / SNPs

▶ transcriptomics: where the functional groups of genes can be
learnt

▶ radiomics: where features often correspond to different
decompositions



Why?

If we believe that the groups represent the data sufficiently well,
then we can boost the efficiency of our models.

i.e. learn models that can predict better with less data.

Within the lab this may pose to be useful. Current published
methods include:

▶ group LASSO

▶ sparse-group LASSO

▶ group SCAD

▶ group spike-and-slab LASSO (works well for linear regression)



Summary

We’ve created a new algorithms for group sparse regression,
available for:

▶ Linear model y = β0 + β1x1 + · · ·+ βpxp
▶ Logistic regression y ∈ {0, 1}
▶ Poisson regression y ∈ {0, 1, . . . }

We’ve reduced the compute time by orders of magnitude (x300
faster), and preserved many useful features.



Summary con.

Additionally, we’ve approached the problem through the Bayesian
paradigm.

Meaning, on top of the speed up over traditional methods, we are
able to use our models for prediction with uncertainty.



A Brief Overview



Model

We are going to be considering models of the form

y = f

(
M∑
k=1

XGk
βGk

)
+ ϵ (1)

where there are k = 1, . . . ,M groups.

In the linear regression setting, f (x) = x .

For other models

▶ logistic model, f is the logistic function

▶ Poisson, f (x) = exp(x)



Formulation

We consider a group spike-and-slab (GSpSL) prior, which has a
hierarchical representation,

βGk
|zk

ind∼ zkΨ(βGk
;λ) + (1− zk)δ0(βGk

)

zk |θk
ind∼ Bernoulli(θk)

θk
iid∼ Beta(a0, b0)

(2)

where δ0(βGk
) is the multivariate Dirac mass on zero with

dimension mk and Ψ(βGk
) is the multivariate double exponential

distribution with density

ψ(βGk
;λ) = Ckλ

mk exp (−λ∥βGk
∥) (3)

where ∥ · ∥ is the ℓ2-norm and Ck the normalizing constant.



Figure: Double Exponential distribution



Rather than using MCMC to obtain a sample from the posterior,
approximated it with an element from a tractable family of
distributions. The variational posterior is given by solving,

Π̃ = argmin
Q∈Q

KL (Q∥Π(·|D)) (4)

where Q is the variational family and KL is the KL divergence



Results



Method l2-error AUC Runtime

GSVB 0.987 (0.70, 1.31) 1.000 (1.00) 1.7s
GSVB 1.008 (0.74, 1.53) 1.000 (1.00) 2.4s
MCMC 0.993 (0.73, 1.30) 1.000 (1.00) 3m 23s
SpSLasso 1.039 (0.69, 4.45) 1.000 (0.90, 1.00) 7.3s

Table: (n=200, p=1,000, g=5, s=5)

Perform just as well as the other methods including MCMC.

Note the runtime for our method is the best (roughly x100 faster
than MCMC)



Method Coverage β ̸= 0 Predictive Coverage

GSVB 0.780 (0.60, 0.96) 0.950 (0.90, 0.98)
GSVB 0.920 (0.76, 1.00) 0.960 (0.90, 0.99)
MCMC 0.960 (0.84, 1.00) 0.960 (0.91, 0.98)

Table: (n=200, p=1,000, g=5, s=5)

Coverage (1:best, 0: worst) for our method is comparable to
MCMC.

Note: the posterior predictive coverage (uncertainty on prediction)
is just as good as MCMC!



Large scale studies

Method l2-error AUC Runtime

GSVB 1.702 (1.42, 2.02) 1.000 (1.00) 7m 47s
GSVB 1.702 (1.47, 2.00) 1.000 (1.00) 7m 17s
SpSLasso 1.719 (1.42, 2.01) 1.000 (1.00) 1m 14s

Table: (n=500, p=5,000, g=10, s=10)

Perform as well / slightly better than other methods in a very high
dimensional setting.

Note: unlike the other method (SpSLasso) we are able to provide
uncertainty around the coefficient estimates and the prediction!



Available Extensions



Extensions

We’ve also extended the method to logistic regression and Poisson
regression.

We’ve seen similar performance for both these types of regression.

Meaning our method provides state-of-the-art performance for
both binary classification and count regression

We may also provide a further extension to Cox regression



Packages

Currently, the project is being written up. However there are
packages available for R.

These include functions to fit models, make predictions and
produce credible intervals



In practice



In practice

In our previous presentation to the group we showed how group
using the group structure in regression can improve performance.

We are yet to run our own analysis on real data, but for a great
paper see

A sparse-group Lasso by Noah Simon, Jerome Friedman, Trevor
Hastie and Rob Tibshirani



Great Exhibition Road Festival



GERF

Before concluding, I’ve submitted a proposal to GERF (for June
2023).

The theme is cancer and bias in machine learning.

The overarching goal is to engage with people about ML and
cancer research and convey that it can be a really useful tool,
made more useful through public engagement and interaction.



Questions?


