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Abstract

We introduce Group Spike-and-slab Variational Bayes (GSVB), a scalable method
for group sparse regression. A fast co-ordinate ascent variational inference (CAVI)
algorithm is developed for several common model families including Gaussian, Bino-
mial and Poisson. Theoretical guarantees for our proposed approach are provided by
deriving contraction rates for the variational posterior in grouped linear regression.
Through extensive numerical studies, we demonstrate that GSVB provides state-of-
the-art performance, offering a computationally inexpensive substitute to MCMC,
whilst performing comparably or better than existing MAP methods. Additionally,
we analyze three real world datasets wherein we highlight the practical utility of
our method, demonstrating that GSVB provides parsimonious models with excellent
predictive performance, variable selection and uncertainty quantification.
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1 Introduction

Group structures arise in various applications, such as genetics (Wang et al., 2007; Breheny

and Huang, 2009), imaging (Lee and Cao, 2021), multi-factor analysis of variance (Meier

et al., 2008), non-parametric regression (Huang et al., 2010), and multi-task learning, among

others. In these settings, p-dimensional feature vectors, xi = (xi1, . . . , xip)
⊤ ∈ Rp, for

i = 1, . . . , n observations can be partitioned into groups of features. Formally this means

that we can construct sub-vectors, xGk
= {xj : j ∈ Gk} for k = 1, . . . ,M , where the

groups Gk = {Gk,1, . . . , Gk,mk
} are disjoint sets of indices satisfying

⋃M
k=1Gk = {1, . . . , p}.

Typically, these group structures are known beforehand, for example in genetics where

biological pathways (gene sets) are known, or they are constructed artificially, for example,

through a basis expansion in non-parametric additive models.

In the regression setting incorporating these group structures is crucial, as disregarding

them can result in sub-optimal models (Huang and Zhang, 2010; Lounici et al., 2011). In

this manuscript, we focus on the general linear regression model (GLM) where, for each

observation i = 1, . . . , n, the response, Yi can be modelled by

E[Yi|xi, β] = f

(
M∑
k=1

x⊤i,Gk
βGk

)
, i = 1, . . . , n (1)

where f : R → R represents the link function, β = (β1, . . . , βp)
⊤ ∈ Rp denotes the model

coefficient vector with βGk
= {βj : j ∈ Gk}. Beyond incorporating the group structure, it is

often of practical importance to identify the groups of features that are associated with the

response. This holds particularly true when there are a large number of them. To address

this, various methods have been proposed over the years, with one of the most popular being

the group LASSO (Yuan and Lin, 2006), which applies an ℓ2,1 norm to groups of coefficients.

Following Yuan and Lin (2006) there have been numerous extensions, including the group

SCAD (Wang et al., 2007), the group LASSO for logistic regression (Meier et al., 2008),
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the group bridge (Huang et al., 2009), group LASSO with overlapping groups (Jacob et al.,

2009), and the sparse group LASSO (Breheny and Huang, 2009; Simon et al., 2013), among

others (see Huang et al. (2012) for a detailed review of frequentist methods).

In a similar vein, Bayesian group selection methods have arisen. The earliest of which

being the Bayesian group LASSO (Raman et al., 2009; Kyung et al., 2010), which uses a

multivariate double exponential distribution prior to impose shrinkage on groups of coeffi-

cients. Notably, the maximum a posteriori (MAP) estimate under this prior coincides with

the estimate under the group LASSO. Other methods include Bayesian sparse group selec-

tion (Xu and Ghosh, 2015; Chen et al., 2016) and the group spike-and-slab LASSO (Bai

et al., 2020) which approach the problem via stochastic search variable selection (Mitchell

and Beauchamp, 1988; Chipman, 1996). Formally, these methods utilize a group spike-and-

slab prior, a mixture distribution of a multivariate Dirac mass on zero and a continuous

distribution over Rmk , where mk is the size of the kth group. Such priors have been shown

to work excellently for variable selection as they are able to set coefficients exactly to zero,

avoiding the use of shrinkage to enforce sparsity. For a comprehensive review see Lai and

Chen (2021) and Jreich et al. (2022).

However, a serious drawback of these methods is that most use Markov Chain Monte

Carlo (MCMC) to sample from the posterior (Raman et al., 2009; Xu and Ghosh, 2015;

Chen et al., 2016). In general, MCMC approaches are known to be computationally ex-

pensive when there are a large number of variables, and within the group setting they

can result in poor mixing when group sizes are large (Chen et al., 2016). To circumvent

these issues, some authors proposed computing MAP estimates (Kyung et al., 2010; Bai

et al., 2020), by relaxing the form of the prior, replacing the multivariate Dirac mass with a

continuous distribution concentrated at zero (Ročková and George, 2018). Although these
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algorithms are fast to compute, they come at the sacrifice of interpretability, as posterior

inclusion probabilities no longer guarantee the coefficient is zero but rather concentrated

at zero. Beyond this, these algorithms only return a point estimate for β and therefore do

not provide uncertainty quantification – a task at the heart of Bayesian inference.

To bridge the gap between scalability and uncertainty quantification several authors

have turned to variational inference (VI). An approach to inference wherein the posterior

distribution is approximated by a tractable family of distributions known as the variational

family (see Zhang et al. (2019) for a review). In the context of high-dimensional Bayesian

inference, VI has proven particularly successful, and has been employed in linear regression

(Carbonetto and Stephens, 2012; Ormerod et al., 2017; Ray and Szabó, 2022), logistic

regression (Ray et al., 2020) and survival analysis (Komodromos et al., 2022) to name a

few. Within the context of Bayesian group regression, to our knowledge only the Bayesian

group LASSO has seen a variational counterpart (Babacan et al., 2014).

In this manuscript we examine the variational Bayes (VB) posterior arising from the

group spike-and-slab prior with multivariate double exponential slab and Dirac spike, re-

ferring to our method as Group Spike-and-slab Variational Bayes (GSVB). We provide

scalable variational approximations to three common classes of generalized linear models:

the Gaussian with identity link function, Binomial with logistic link function, and Poisson

with exponential link function. We outline a general scheme for computing the variational

posterior via co-ordinate ascent variational inference. We further show that for specific

cases, the variational family can be re-parameterized to allow for more efficient updates.

Through extensive numerical experiments we demonstrate that GSVB achieves state-

of-the-art performance while significantly reducing computation time by several orders of

magnitude compared to MCMC. Moreover, through our comparison with MCMC, we high-
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light that the variational posterior provides excellent uncertainty quantification through

marginal credible sets with impressive coverage. Additionally, the proposed method is

compared against the spike-and-slab group LASSO (Bai et al., 2020), a state-of-the-art

Bayesian group selection algorithm that returns MAP estimates. Within this comparison

our method demonstrates comparable or better performance in terms of group selection and

effect estimation, whilst carrying the added benefit of providing uncertainty quantification,

a feature not available by other scalable methods in the literature.

To highlight the practical utility of our method, we analyse three real datasets, demon-

strating that our method provides excellent predictive accuracy, while also achieving parsi-

monious models. Additionally, we illustrate the usefulness of the VB posterior by showing

its ability to provide posterior predictive intervals, a feature not available to methods that

provide MAP estimates, and computationally prohibitive to compute via MCMC.

Theoretical guarantees for our method are provided in the form of posterior contraction

rates, which quantify how far the posterior places most of its probability from the ‘ground

truth’ generating the data for large sample sizes. This approach builds on the work of

Castillo et al. (2015) and Ray and Szabó (2022), and extends previous Bayesian contraction

rate results for true posteriors in the group sparse setting (Ning et al., 2020; Bai et al.,

2020) to their variational approximation.

Concurrent to our work, Lin et al. (2023) proposed a similar spike-and-slab model for

group variable selection in linear regression, which appeared on arXiv shortly after our

preprint.

Notation. Let y = (y1, . . . , yn)
⊤ ∈ Rn denote the realization of the random vector Y =

(Y1, . . . , Yn). Further, let X = (x1, . . . , xn)
⊤ ∈ Rn×p denote the design matrix, where for

a group Gk let XGk
= (x1,Gk

, . . . , xn,Gk
)⊤ ∈ Rn×mk . Similarly, for Gc

k = {1, . . . , p} \ Gk,
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denote XGc
k
= (x1,Gc

k
, . . . , xn,Gc

k
)⊤ ∈ Rn×(p−mk) where xi,Gc

k
= {xij : j ∈ Gc

k}, and βGc
k
=

{βj : j ∈ Gc
k}. Wherein, without loss of generality we assume that the elements of the

groups are ordered such that 1 = G1,1 < G1,2 < · · · < GM,mM
= p. Finally, the Kullback-

Leibler divergence is defined as DKL = DKL(Q∥P ) =
∫
X log

(
dQ
dP

)
dQ, where Q and P are

probability measures on X , such that Q is absolutely continuous with respect to P .

2 Prior and Variational family

To model the coefficients β, we consider a group spike-and-slab prior. For each group Gk,

the prior over βGk
consists of a mixture distribution of a multivariate Dirac mass on zero

and a multivariate double exponential distribution, Ψ(βGk
), whose density is given by,

ψ(βGk
;λ) = Ckλ

mk exp (−λ∥βGk
∥)

where Ck = [2mkπ(mk−1)/2Γ((mk + 1)/2)]−1 and ∥ · ∥ is the ℓ2-norm. In the context of

sparse Bayesian group regression the multivariate double exponential has been previously

considered by Raman et al. (2009) and Kyung et al. (2010) as part of the Bayesian group

LASSO and by Xu and Ghosh (2015) within a group spike-and-slab prior.

Formally the prior, which we consider throughout, is given by Π(β) =
⊗M

k=1Πk(βGk
),

where each Πk(βGk
) has the hierarchical representation,

βGk
|zk

ind∼ zkΨ(βGk
;λ) + (1− zk)δ0(βGk

)

zk|θk
ind∼ Bernoulli(θk)

θk
iid∼ Beta(a0, b0)

(2)

for k = 1, . . . ,M , where δ0(βGk
) is the multivariate Dirac mass on zero with dimensionmk =

dim(βGk
). In conjunction with the log-likelihood, ℓ(D; β) for a dataset D = {(yi, xi)}ni=1,
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we write the posterior density under the given prior as,

dΠ(β|D) = Π−1
D eℓ(D;β)dΠ(β) (3)

where ΠD =
∫
Rp e

ℓ(D;β)dΠ(β) is a normalization constant known as the model evidence.

The posterior arising from the prior (2) and the dataset D assigns probability mass

to all 2M possible sub-models, i.e. each subset S ⊆ {1, . . . ,M}, such that zk = 1, k ∈ S

and zk = 0 otherwise. As using MCMC procedures to sample from this complex posterior

distribution is computationally prohibitive, even for a moderate number of groups, we resort

to variational inference to approximate it. This approximation is known as the variational

posterior which is an element of the variational family Q given by

Π̃ = argmin
Q∈Q

DKL (Q∥Π(·|D)) . (4)

For our purposes the variational family we consider is a mean-field variational family,

Q =

{
Q(µ, σ, γ) =

M⊗
k=1

Qk(µGk
, σGk

, γk) :=
M⊗
k=1

[
γk Nk

(
µGk

, diag(σ2
Gk
)
)
+ (1− γk)δ0

]}
(5)

where µ ∈ Rp with µGk
= {µj : j ∈ Gk}, σ2 ∈ Rp

+ with σ2
Gk

= {σ2
j : j ∈ Gk}, γ =

(γ1, . . . , γM)⊤ ∈ [0, 1]M . Nk(µ,Σ) denotes the multivariate Normal distribution with mean

parameter µ and covariance Σ. Notably, under Q ∈ Q, the vector of coefficients for

each group Gk is a spike-and-slab distribution where the slab consists of the product of

independent Normal distributions,

βGk

ind∼ γk
[⊗
j∈Gk

N(µj, σ
2
j )
]
+ (1− γk)δ0,

meaning the structure (correlations) between elements within the same group are not cap-

tured. To mitigate this, a second variational family is introduced, where the covariance

within groups is unrestricted. Formally,

Q′ =

{
Q′(µ,Σ, γ) =

M⊗
k=1

Q′
k(µGk

,ΣGk
, γk) :=

M⊗
k=1

[γk N (µGk
,ΣGk

) + (1− γk)δ0]

}
(6)
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where Σ ∈ Rp×p is a covariance matrix for which Σij = 0, for i ∈ Gk, j ∈ Gl, k ̸= l and

ΣGk
= (Σij)i,j∈Gk

∈ Rmk×mk denotes the covariance matrix of the kth group. Notably, Q′

should provide greater flexibility when approximating the posterior, because unlikeQ ⊂ Q′,

it is able to capture the dependence between coefficients in the same group. The importance

of which is highlighted empirically in Section 5 wherein the two families are compared.

Note that the posterior does not take the form Q or Q′, as the use of these variational

families replaces the 2M model weights by M VB group inclusion probabilities, γk, thereby

introducing substantial additional independence. For example, information as to whether

two groups of variables are selected together or not is lost. However, the form of the VB

approximation retains many of the interpretable features of the original posterior such as

the inclusion probabilities of particular groups.

3 Computing the Variational Posterior

Computing the variational posterior defined in (4) relies on optimizing a lower bound on the

model evidence, ΠD, known as the evidence lower bound (ELBO). The ELBO follows from

the non-negativity of the Kullback-Leibler divergence and is given by EQ

[
ℓ(D; β)− log dQ

dΠ

]
.

Intuitively, the first term evaluates the model’s fit to the data, while the second term acts

as a regularizer, ensuring the variational posterior is “close” to the prior distribution.

Various strategies exist to tackle the minimization of the negative ELBO,

LQ(D) := EQ

[
log

dQ

dΠ
− ℓ(D; β)

]
(7)

with respect to Q ∈ Q (Zhang et al., 2019). One popular approach is co-ordinate ascent

variational inference (CAVI), where sets of parameters of the variational family are op-

timized in turn while the remainder are kept fixed. Although this strategy does not (in
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general) guarantee the global optimum, it is easy to implement and often leads to scal-

able inference algorithms. In the following subsections we detail how this algorithm is

constructed, noting that derivations are presented under the variational family Q′, as the

equations for Q ⊂ Q′ follow by restricting ΣGk
to be a diagonal matrix.

3.1 Computing the Evidence lower bound

To compute the negative ELBO, note that the KL divergence between the prior and the

variational distribution, DKL(Q
′∥Π) = EQ′ [log(dQ′/dΠ)] is constant regardless of the form

of the likelihood. To evaluate an expression for this quantity the group independence

structure between the prior and variational distribution is exploited, allowing for the log

Radon-Nikodym, log (dQ′/dΠ), to be expressed as,

log
dQ′

dΠ
(β) =

M∑
k=1

log
dQ′

k

dΠk

(βGk
) =

M∑
k=1

Izk=1 log
γkdNk

w̄dΨk

(βGk
) + Izk=0 log

(1− γk)dδ0
(1− w̄)dδ0

(βGk
).

where w̄ = α0/(α0 + b0). Subsequently, it follows that,

DKL(Q
′∥Π) =

M∑
k=1

(
γk log

γk
w̄
− γk

2
log(det(2πΣGk

))− γkmk

2
− γk log(Ck)

− γkmk log(λ) + EQ′ [Izk=1λ∥βGk
∥] + (1− γk) log

1− γk
1− w̄

) (8)

where we have used the fact that EβGk
∼N(µGk

,ΣGk
)[(βGk

− µGk
)⊤Σ−1

Gk
(βGk

− µGk
)] = mk.

Notably, there is no closed form for EQ′ [Izk=1λ∥βGk
∥], meaning LQ′(D) is not tractable and

optimization over this quantity would require costly Monte Carlo methods.

To circumvent this issue, a surrogate objective is constructed and used instead of the

negative ELBO. This follows by applying Jensen’s inequality to EQ′ [Izk=1λ∥βGk
∥], giving,

EQ′ [Izk=1λ∥βGk
∥] = γkENk

[λ∥βGk
∥] ≤ γkλ

(∑
i∈Gk

Σii + µ2
i

)1/2

. (9)
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Thus, DKL(Q
′∥Π) can be upper-bounded by,

ϱ(µ,Σ, γ) :=
M∑
k=1

(
γk log

γk
w̄
− γk

2
log(det(2πΣGk

))− γkmk

2

− γk log(Ck)− γkmk log(λ) + γkλ

(∑
i∈Gk

Σii + µ2
i

)1/2

+ (1− γk) log
1− γk
1− w̄

) (10)

and in turn, LQ′(D) ≤ ϱ(µ,Σ, γ)−EQ′ [ℓ(D; β)]. Via this upper bound, we are able to con-

struct a tractable surrogate objective. Formally, this objective is denoted by, F(µ,Σ, γ, θ),

where we introduce ϑ to parameterize additional hyperparameters, specifically those in-

troduced to model the variance term under the Gaussian family, and those introduced to

bound the Binomial likelihood. Under this parametrization we define,

F(µ,Σ, γ, ϑ) := ϱ(µ,Σ, γ) + ϱ̃(ϑ) + Λ(µ,Σ, γ, ϑ) ≥ LQ′(D), (11)

where ϱ̃(ϑ) : Θ → R and Λ(µ,Σ, γ, ϑ) ≥ EQ′ [−ℓ(D; β)] (which is an inequality under non-

tractable likelihoods). To this end, what remains to be computed is an expression for the

expected negative log-likelihood and the term ϱ̃(ϑ) where appropriate. In the following

three subsections we provide derivations of the objective function F(µ,Σ, γ, θ) for the

Gaussian, Binomial and Poisson likelihoods taking the canonical link functions for each.

3.1.1 Gaussian

Under the Gaussian family with identity link function, Yi
iid∼ N(x⊤i β, τ

2) for all i = 1, . . . , n,

the log-likelihood is given by ℓ(D; β, τ 2) = −n
2
log(2πτ 2)− 1

2τ2
∥y −Xβ∥2. To model τ 2 an

inverse Gamma prior is considered due to its popularity among practitioners, i.e. τ 2
ind∼

Γ−1(a, b) which has density ba

Γ(a)
x−a−1 exp(−b

x
) where a, b > 0. The prior is therefore given by

Π(β, τ 2) = Π(β)Γ−1(τ 2), and the posterior density by dΠ(β, τ 2|D) = Π−1
D eℓ(D;β,τ2)dΠ(β, τ 2),

where ΠD =
∫
Rp×R+

eℓ(D;β,τ2)dΠ(β, τ 2) and D = {(yi, xi)}ni=1 is the observed data.
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To include this term within the inference procedure, the variational families Q and Q′

are extended by Qτ = Q× {Γ−1(a′, b′) : a′, b′ > 0} and Q′
τ = Q′ × {Γ−1(a′, b′) : a′, b > 0}

respectively. Under the extended variational family Q′
τ , the negative ELBO is given by

EQ′
τ

[
log

dQ′

dΠ
(β) + log

dΓ−1(a′, b′)

dΓ−1(a, b)
(τ 2)− ℓ(D; β, τ 2)

]
,

where the second term follows from the independence of τ 2 and β in the prior and variational

family and is given by,

ϱ̃(ϑ) := EQ′
τ

[
log

(
dΓ−1(a′, b′)

dΓ−1(a, b)

)]
= (a′ − a)κ(a′) + a log

b′

b
+ log

Γ(a)

Γ(a′)
+

(b− b′)a′

b′
(12)

where ϑ = {(a′, b′)}. The expectation of the negative log-likelihood is given by,

Λ(µ,Σ,γ, ϑ) := EQ′
τ
[−ℓ(D; β)] = n

2
(log(2π) + log(b′)− κ(a′))

+
a′

2b′

(
∥y∥2 +

(
p∑

i=1

p∑
j=1

(X⊤X)ijEQ′
τ
[βiβj]

)
− 2

M∑
k=1

γk⟨y,XGk
µGk
⟩

) (13)

where,

EQ′
τ
[βiβj] =


γk (Σij + µiµj) i, j ∈ Gk

γkγhµiµj i ∈ Gk, j ∈ Gh, h ̸= k

(14)

Substituting (12) and (13) into (11) gives F(µ,Σ, γ, θ) under the Gaussian family.

3.1.2 Binomial

Under the Binomial family with logistic link, Yi
iid∼ Bernoulli(pi) for all i = 1, . . . , n where

pi = P(Yi = 1|xi) = exp(x⊤i β)/(1 + exp(x⊤i β)). The log-likelihood is given by ℓ(D, β) =∑n
i=1 yi

(
x⊤i β

)
− log

(
1 + exp(x⊤i β)

)
where D = {(yi, xi)}ni=1 with yi ∈ {0, 1}.

Unlike the Gaussian family, variational inference in this setting is challenging because of

the intractability of the expected log-likelihood under the variational family. To overcome

this issue several authors have proposed bounds or approximations to maintain tractability
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(see Depraetere and Vandebroek (2017) for a review). Here we employ a bound introduced

by Jaakkola and Jordan (1996), given as

s(x) ≥ s(t) exp

{
x− t
2
− a(t)

2
(x2 − t2)

}
(15)

where s(x) = (1 + exp(−x))−1 and a(t) = s(t)−1/2
t

, x ∈ R and t ∈ R is an additional

parameter that must be optimized to ensure tightness of the bound.

Using (15) allows for the negative log-likelihood to be bounded by,

−ℓ(D; β) ≤
n∑

i=1

−yix⊤i β − log s(ti) +
x⊤i β + ti

2
+
a(ti)

2
((x⊤i β)

2 − t2i ) (16)

where ti ∈ R is a hyper-parameter for each observation. Taking the expectation of (16)

with respect to the variational family gives

EQ′ [−ℓ(D; β)] ≤ Λ(µ,Σ, γ, ϑ) :=
n∑

i=1

(
M∑
k=1

γk(1/2− yi)x⊤i,Gk
µGk

)
+
ti
2
− log s(ti)

+
a(ti)

2

((
p∑

j=1

p∑
l=1

(xijxilEQ′ [βjβl]

)
− t2i

) (17)

where ϑ = {t1, . . . , tn}. In turn substituting (17) and ϱ̃(ϑ) = 0 into (11) gives the objective

under the Binomial family.

3.1.3 Poisson

Finally, under the Poisson family with exponential link function, Yi
iid∼ Poisson(λi) for

all i = 1, . . . , n with λi = exp(x⊤i β) > 0. The log-likelihood is given by, ℓ(D; β) =∑n
i=1 yix

⊤
i β − exp(x⊤i β)− log(y!), whose (negative) expectation is tractable and given by,

EQ′ [−ℓ(D; β)] = Λ(µ,Σ, γ, ϑ) :=
n∑

i=1

log(y!)−MQ′(xi) +

(
M∑
k=1

γkyix
⊤
i,Gk

µGk

)
(18)

whereMQ′(xi) =
∏M

k=1MQk
(xi,Gk

) is the moment generating function under the variational

family, with MQk
(xi,Gk

) := γkMNk
(xi,Gk

) + (1− γk) being the moment generating function
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for the kth group and MNk
(xi,Gk

) = exp
{
x⊤i,Gk

µGk
+ 1

2
x⊤i,Gk

ΣGk
xi,Gk

}
. Unlike the previous

two families the Poisson family, does not require any additional variational parameters,

therefore ϑ = {} and ϱ̃(ϑ) = 0.

3.2 Coordinate ascent algorithm

Recall the aim is to approximate the posterior Π(·|D) by a distribution from a given vari-

ational family. This approximation is obtained via the minimization of the objective F

derived in the previous section. To achieve this a CAVI algorithm is proposed (Murphy,

2007; Blei et al., 2017) as outlined in Algorithm 1.

In this context, the objective introduced in (11) is written as F(µ,Σ, γ, ϑ) = F(µGk
, µGc

k
,

ΣGk
,ΣGc

k
, γk, γ−k, ϑ), highlighting the fact that optimization over the variational parame-

ters occurs group-wise. Further, for each group k, while the optimization of the objective

function over the inclusion probability, γk, can be done analytically, we use the Limited

memory Broyden–Fletcher–Goldfarb–Shanno optimization algorithm (L-BFGS) to update

µGk
at each iteration of the CAVI procedure. Details for the optimization with respect to

ΣGk
are presented in Section 3.2.1. The hyper-parameters, ϑ, are updated using L-BFGS

for the Gaussian family and analytically for those under the Binomial family.

To assess convergence, the total absolute change in the parameters is tracked, terminat-

ing when this quantity falls below a specified threshold, set to 10−3 in our implementation.

Other methods involve monitoring the absolute change in the ELBO, however we found

this prohibitively expensive to compute for this purpose.
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Algorithm 1 Group sparse co-ordinate ascent variational inference

Initialize µ,Σ, γ, ϑ

while not converged

for k = 1, . . . ,M

µGk
← argminµGk

∈Rmk F(µGk
, µGc

k
,ΣGk

,ΣGc
k
, γk = 1, γ−k, ϑ)

ΣGk
← argminΣGk

∈Rmk×mk F(µGk
, µGc

k
,ΣGk

,ΣGc
k
, γk = 1, γ−k, ϑ)

γk ← argminγk∈[0,1] F(µGk
, µGc

k
,ΣGk

,ΣGc
k
, γk, γ−k, ϑ)

ϑ ← argminϑ∈Θ F(µGk
, µGc

k
,ΣGk

,ΣGc
k
, γk, γ−k, ϑ)

return µ,Σ, γ, ϑ.

3.2.1 Re-parameterization of ΣGk

Our focus now turns to the optimization of F(µGk
, µGc

k
,ΣGk

,ΣGc
k
, γk = 1, γ−k, ϑ) w.r.t.

ΣGk
. By using similar ideas to those of Seeger (1999) and Opper and Archambeau (2009),

it can be shown that only one free parameter is needed to describe the optimum of ΣGk

under the Gaussian (see below) and Binomial family (see Section A of the Supplementary

material). The objective w.r.t ΣGk
under the Gaussian family, is given by,

a′

2b′
tr(X⊤

Gk
XGk

ΣGk
)− 1

2
log detΣGk

+ λ(
∑
i∈Gk

Σii + µ2
i )

1/2 + C (19)

where C is a constant that does not depend on ΣGk
. Differentiating (19) w.r.t. ΣGk

, setting

to zero and re-arranging gives,

ΣGk
=

(
a′

b′
X⊤

Gk
XGk

+ 2νkImk

)−1

(20)

where νk = 1
2
λ(
∑

i∈Gk
Σii + µ2

i )
−1/2. Thus, substituting ΣGk

=
(
a′

b′
X⊤

Gk
XGk

+ wkImk

)−1

where wk ∈ R into the objective and optimizing over wk is equivalent to optimizing over

ΣGk
, and carries the added benefit of requiring one free parameter to perform rather than
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mk(mk−1)/2. Note that under this re-parametrization the inversion of an mk×mk matrix

is required which can be a time consuming operation for large mk.

For the Poisson family the same re-parameterization cannot be used, so ΣGk
is param-

eterized by U⊤
k Uk where Uk ∈ Rmk×mk is an upper triangular matrix. Optimization is then

performed on the upper triangular elements of Uk.

3.2.2 Initialization

As with any gradient-descent based approach, our CAVI algorithm is sensitive to the choice

of initial values. We suggest to initialize µ using the group LASSO from the package

gglasso using a small regularization parameter. This ensures many of the elements are

non-zero. The covariance matrix Σ can be initialised by using the re-parametrization

outlined in Section 3.2.1 with an initial value of wk = 1 for k = 1, . . . ,M for both the

Gaussian and the Binomial families. For the Poisson family we propose the use of an initial

covariance matrix Σ = diag(0.2, . . . , 0.2). Finally, the inclusion probabilities are initialised

as γ = (0.5, . . . , 0.5)⊤. For the additional hyper-parameters ϑ are used: a′ = b′ = 10−3 and

ti =
(∑M

k=1 γk
[
⟨µGk

, xi,Gk
⟩2 + x⊤i,Gk

ΣGk
xi,Gk

])1/2
for all i = 1, . . . , n.

4 Theoretical results for grouped linear regression

4.1 Notation and assumptions

This section establishes frequentist theoretical guarantees for the proposed VB approach

in sparse high-dimensional linear regression with group structure. The full proofs of the

following results are provided in the Supplementary Material.

To simplify technicalities, the variance parameter τ 2 is taken as known and equal to 1,
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giving model Y = Xβ + ε with Y ∈ Rn, X ∈ Rn×p and ε ∼ Nn(0, In). Under suitable

conditions, contraction rates for the variational posterior are established, which quantify

its spread around the ‘ground truth’ parameter β0 ∈ Rp generating the data as n, p→∞.

Recall that the covariates are split into M pre-specified disjoint groups G1, . . . , GM of

size |Gk| = mk with
∑M

k=1mk = p and maximal group size mmax = maxk=1,...,M mk. The

above model can then be written as

Y =
M∑
k=1

XGk
βGk

+ ε, (21)

with βGk
∈ Rmk and XGk

∈ Rn×mk . Let Pβ denote the law of Y under (21), Sβ ⊆

{G1, . . . , GM} be the set containing the indices of the non-zero groups in β ∈ Rp. For

a vector β ∈ Rp and set S, we also write βS = (βi)i∈Gk:Gk∈S ∈ R
∑

Gk∈S mk for its vector

restriction to S. We write β0 for the ground truth generating the data, S0 = Sβ0 and s0 =

|S0| for its group-sparsity. For a matrix A ∈ Rm×n, let ∥A∥2F =
∑m

i=1

∑n
j=1A

2
ij = Tr(ATA)

be the Frobenius norm and define the group matrix norm of X ∈ Rn×p by

∥X∥ = max
k=1,...,M

∥XGk
∥F .

If all the groups are singletons, ∥X∥ reduces to the same norm as in Castillo et al. (2015).

We further define the ℓ2,1-norm of a vector by ∥β∥2,1 =
∑M

k=1 ∥βGk
∥2. We assume that the

prior slab scale λ satisfies

λ ≤ λ ≤ 2λ̄, λ =
∥X∥

M1/mmax
, λ̄ = 3∥X∥

√
logM, (22)

mirroring the situation without grouping (Castillo et al., 2015; Ray and Szabó, 2022).

The parameter β in (21) is not estimable without additional assumptions on the design

matrix X, for instance that XTX is invertible for sparse subspaces of Rp. These notions of

invertibility can be precise via the following definitions, which are the natural adaptations
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of compatibility conditions to the group sparse setting (Bühlmann and van de Geer, 2011;

Castillo et al., 2015).

Definition 1. A model S ⊆ {1, . . . ,M} has compatibility number

ϕ(S) = inf

{
∥Xβ∥2|S|1/2

∥X∥∥βS∥2,1
: ∥βSc∥2,1 ≤ 7∥βS∥2,1, βS ̸= 0

}
.

Compatibility considers only vectors whose coordinates are small outside S, and hence

is a (weaker) notion of approximate rather than exact sparsity. For all β in the above

set, it holds that ∥Xβ∥2|S|1/2 ≥ ϕ(S)∥X∥∥βS∥2,1, which can be interpreted as a form of

continuous invertibility of X for approximately sparse vectors in the sense that changes in

βS lead to sufficiently large changes in Xβ that can be detected by the data. The number 7

is not important and is taken in Definition 2.1 of Castillo et al. (2015) to provide a specific

numerical value; since we use several of their techniques, we employ the same convention.

We next consider two further notions of invertibility for exact group sparsity.

Definition 2. The compatibility number for vectors of dimension s is

ϕ̄(s) = inf

{
∥Xβ∥2∥Sβ|1/2

∥X∥∥β∥2,1
: 0 ̸= |Sβ| ≤ s

}
.

Definition 3. The smallest scaled sparse singular value of dimension s is

ϕ̃(s) = inf

{
∥Xβ∥2
∥X∥∥β∥2

: 0 ̸= |Sβ| ≤ s

}
.

While XTX is not generally invertible in the high-dimensional setting, these last two

definitions weaken this requirement to sparse vectors. These are natural extensions of the

definitions in Castillo et al. (2015) to the group setting, and similar interpretations and

relations to the usual sparse setting apply also here, see Bühlmann and van de Geer (2011)

or Section 2.2 in Castillo et al. (2015) for further discussion.
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The interplay of the group structure and individual sparsity can lead to multiple regimes

see for instance Lounici et al. (2011) and Bühlmann and van de Geer (2011). To make our

results more interpretable, we restrict to the main case of practical interest where the group

sizes are not too large, and hence the group sparsity drives the estimation rate.

Assumption (K). There exists K > 0 such that mmax logmmax ≤ K logM.

While related works make similar assumptions (Bai et al., 2020), introducing an explicit

constant K > 0 above allows us to clarify the uniformity in our results.

4.2 Asymptotic results

We now state our main result on variational posterior contraction for both prediction loss

∥X(β−β0)∥2 and the usual ℓ2-loss. Our results are uniform over vectors in sets of the form

Bρn,sn = Bρn,sn(c0) := {β0 ∈ Rp : ϕ(Sβ0) ≥ c0, |Sβ0 | ≤ sn, ϕ̃(ρn|Sβ0 |) ≥ c0}, (23)

where sn ≥ 1, c > 0 and ρn →∞ (arbitrarily slowly).

Theorem 1 (Contraction). Suppose that Assumption (K) holds, the prior (2) satisfies (22)

and sn satisfies mmax log sn = O(logM). Then the variational posterior Π̃ based on either

the variational family Q in (5) or Q′ in (6) satisfies, with s0 = |Sβ0|,

sup
β0∈Bρn,sn

Eβ0Π̃

(
β : ∥X(β − β0)∥2 ≥

H0ρ
1/2
n

√
s0 logM

ϕ̄(ρns0)

)
→ 0

sup
β0∈Bρn,sn

Eβ0Π̃

(
β : ∥β − β0∥2 ≥

H0ρ
1/2
n

√
s0 logM

∥X∥ϕ̃(ρns0)2

)
→ 0,

for any ρn →∞ (arbitrarily slowly), Bρn,sn defined in (23) and where H0 depends only on

the prior.

Contraction rates for the full posterior based on a group spike and slab prior were

established in Ning et al. (2020), as well as for the spike and slab group LASSO in Bai
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et al. (2020). Our proofs are instead based on those in Castillo et al. (2015) and Ray

and Szabó (2022). We have extended their theoretical results from the coordinate sparse

setting to the group sparse setting. This approach permits more explicit proofs and allows

us to consider somewhat different assumptions from previous group sparse works (Ning

et al., 2020; Bai et al., 2020), for instance removing the boundedness assumption for the

parameter spaces.

Remark 1. The optimization problem (4) is in general non-convex, and hence there is

no guarantee that CAVI (or any other algorithm) will converge to the global minimizer Π̃.

However, an inspection of the proofs shows that the conclusions of Theorems 1 and 2 apply

also to any element Q∗ ∈ Q ⊂ Q′ in the variational families for which

0 ≤ DKL(Q
∗∥Π(·|Y ))−DKL(Π̃∥Π(·|Y )) = LQ∗(D)− LΠ̃(D) = O(s0 logM),

where s0 is the true group sparsity and LQ(D) is the negative ELBO. Thus, as long as the

ELBO is within O(s0 logM) of its maximum, the resulting variational approximation will

satisfy the above conclusions, even if it is not the global optimum.

The next result shows that the variational posterior puts most of its mass on models

of size at most a multiple of the true number of groups, meaning that it concentrates on

sparse sets.

Theorem 2 (Dimension). Suppose that Assumption (K) holds, the prior (2) satisfies (22)

and sn satisfies mmax log sn = O(logM). Then the variational posterior Π̃ based on either

the variational family Q in (5) or Q′ in (6) satisfies

sup
β0∈Bρn,sn

Eβ0Π̃ (β : |Sβ| ≥ ρn|Sβ0 |)→ 0

for any ρn →∞ (arbitrarily slowly) and Bρn,sn defined in (23).
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5 Numerical experiments

In this section a numerical evaluation of our method, referred to as Group Spike-and-slab

Variational Bayes (GSVB), is presented1. Where necessary we distinguish between the

two families, Q and Q′, by the suffix ‘–D’ and ‘–B’ respectively, i.e. GSVB–D denotes the

method under the variational family Q. Notably, throughout all our numerical experiments

the prior parameters are set to λ = 1, α0 = 1, b0 = M , and a = b = 10−3 for the inverse-

Gamma prior on τ 2 under the Gaussian family.

This section begins with a comparison of GSVB2 against MCMC to assess the quality

of the variational posterior in terms of variable selection and uncertainty quantification.

Following this, a large-scale comparison with the Spike-and-Slab Group LASSO (SSGL)

proposed by Bai et al. (2020), a state-of-the-art MAP Bayesian group selection method

described in detail in Section 5.3, is performed.

5.1 Simulation set-up

Data is simulated for i = 1, . . . , n observations each having a response yi ∈ R and p

continuous predictors xi ∈ Rp. The response is sampled independently from the respective

family with mean given by f(β⊤
0 xi) where f is the link function (and variance applicable to

the Gaussian family of τ 2 = 1). The true coefficient vector β0 = (β0,G1 , . . . , β0,GM
)⊤ ∈ Rp

consists of M groups each of size m i.e. M × m = p. Of these groups, s are chosen at

random to be non-zero and have each of their element values sampled independently and

uniformly from [−βmax, 0.2] ∪ [0.2, βmax] where βmax = 1.5, 1.0 and 0.45 for the Gaussian,

Binomial and Poisson families respectively. Finally, the predictors are generated from one

1Scripts to reproduce our results can be found at https://github.com/mkomod/p3
2An R package is available at https://github.com/mkomod/gsvb.
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of four settings:

• Setting 1: xi
iid∼ N(0p, Ip)

• Setting 2: xi
iid∼ N(0p,Σ) where Σij = 0.6|i−j| for i, j = 1, . . . , p.

• Setting 3: xi
iid∼ N(0,Σ) where Σ is a block diagonal matrix where each block A is

a 50× 50 square matrix such that Ajl = 0.6, j ̸= l and Ajj = 1 otherwise.

• Setting 4: xi
iid∼ N(0,Σ) where Σ = (1−α)W−1+αV −1 withW ∼Wishart(p+ν, Ip)

and V is a block diagonal matrix ofM blocks, where each block Vk, for k = 1, . . . ,M ,

is an mk ×mk matrix given by Vk ∼Wishart(mk + ν, Imk
); we let (ν, α) = (3, 0.9) so

that predictors within groups are more correlated than variables between groups.

To evaluate the performance of the methods four different metrics are considered: (i)

the ℓ2-error, ∥β̂−β0∥2, between the true vector of coefficients and the estimated coefficient

β̂ defined as the posterior mean where applicable, or the maximum a posteriori (MAP)

estimate if this is returned, (ii) the area under the curve (AUC) of the receiver opera-

tor characteristic curve, which compares true positive and false positive rate for different

thresholds of the group posterior inclusion probability, (iii) the marginal coverage of the

non-zero coefficients, which reports the proportion of times the true coefficient β0,j is con-

tained in the marginal credible set {j : β0,j ̸= 0}, (iv) and the size of the marginal credible

set for the non-zero coefficients, given by the Lebesgue measure of the set. The last two

metrics can only be computed when a distribution for β is available i.e. via MCMC or VB.

The 95% marginal credible sets for each variable j ∈ Gk for k = 1, . . . ,M are given by:

Sj =



{0} if γk < α[
µj ± Σ

1/2
jj Φ−1(

αγk

2
)
]

if γk ≥ α and 0 /∈ [µj ± Σ
1/2
jj Φ−1(

αγk

2
)][

µj ± Σ
1/2
jj Φ−1(

αγk

2
+ 1−γk

2
)
]
∪ {0} otherwise
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where αγk = 1− α
γk

and Φ−1 is the quantile function of the standard Normal distribution.

5.2 Comparison to MCMC

Our first numerical study compares GSVB to the posterior obtained via MCMC, often

considered the gold standard in Bayesian inference. The details of the MCMC sampler

used for this comparison are outlined in Section C of the Supplementary material3. The

MCMC sampler is ran for 100,000 iterations taking a burn-in period of 50,000 iterations.

Within this comparison we set p = 1,000, m = 5, and vary the number of non-zero

groups, s. As highlighted in Figure 1 GSVB-B performs excellently in nearly all settings,

demonstrating comparable results to MCMC in terms of ℓ2-error and AUC. This indicates

that GSVB-B exhibits similar characteristics to MCMC, both in terms of the selected

groups and the posterior mean. As anticipated, all the methods exhibit better performance

in simpler settings and show a decline in performance as the problem complexity increases.

Regarding coverage, whilst MCMC shows slightly better performance compared to

GSVB, the proposed method still provides credible sets that capture a significant por-

tion of the true non-zero coefficients (particularly GSVB-B). However, the credible sets

of the variational posterior are sometimes not large enough to capture the true non-zero

coefficients. This observation is further supported by the size of the marginal credible sets,

with MCMC producing the largest sets, followed by GSVB-B and GSVB-D. These find-

ings confirm the well-known fact that VB tends to underestimate the posterior variance

(Carbonetto and Stephens, 2012; Blei et al., 2017; Zhang et al., 2019; Ray et al., 2020).

Interestingly, the set size is larger under Q′, highlighting the fact that the mean field

variational family (Q) lacks the necessary flexibility to accurately capture the underlying

3An implementation is available at https://github.com/mkomod/spsl.
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Figure 1: Performance evaluation of GSVB and MCMC for Settings 1–4 with p = 1, 000

across 100 runs. For each method the white diamond (⋄) indicates the median of the metric,

the thick black line ( ) the interquartile range, and the black line ( ) 1.5 times the

interquartile range. Rows 1–2: Gaussian family with (n,m, s) = (200, 5, 5), (200, 5, 10).

Row 3: Binomial family with (n,m, s) = (400, 5, 5). Row 4: Poisson family with

(n,m, s) = (400, 5, 2). Note that for the Binomial family Setting 1 results in perfect

separation of classes and is excluded from the study
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structure in the data. Furthermore, this result indicates that the full marginal credible

quantity improves through the consideration of the interactions within the group.

5.3 Large scale simulations

In this section, our proposed approach is compared against SSGL (Bai et al., 2020) a state-

of-the-art Bayesian method. Notably, SSGL employs a similar prior to that introduced in

(2), however the multivariate Dirac mass on zero is replaced with a multivariate double

exponential distribution, giving a continuous mixture with one density acting as the spike

and the other as the slab, parameterized by λ0 and λ1 respectively. Under this prior Bai

et al. (2020) derive an EM algorithm, which allows for fast updates, however, only MAP

estimates are returned, meaning a posterior distribution for β is not available. In addition,

the performance of the proposed method is evaluated on larger datasets. As both methods

are scalable with p, in this section it is increased to p = 5, 000. Both the sample size and

the number of active (non-zero) groups, s are varied as illustrated in Figure 2.

In this comparison, we set λ1 = 1 for SSGL meaning the slab is identical between the

two methods. For the spike for SSGL we took a value of λ0 = 100 for the Gaussian and

Poisson family and λ0 = 20 under the Binomial family. These values were selected to

ensure that sufficient mass is concentrated about zero without turning to cross validation

to select the value. Finally, we let a0 = 1 and b0 =M for both methods.

Given that SSGL only returns a point estimate for the vector of coefficients β, the

methods are compared in terms of ℓ2-error between the estimated coefficient and the true

one, as well as in terms of AUC using the group inclusion probabilities. Overall GSVB

performs comparatively or better than SSGL in most settings, obtaining a lower ℓ2-error

and higher AUC (Figure 2). As expected, across the different methods there is a decrease in
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performance as the difficulty of the setting increases, meaning all methods perform better

when there is less correlation in the design matrix. We note that the runtime of SSGL

is marginally faster than our method in Settings 1-3, and faster in Settings 4. This is

explained by the fact that SSGL only provides point estimate for β, rather than the full

posterior distribution. A full breakdown of the runtimes is presented in Section D.2 of the

Supplementary Material. Within this large scale simulation our method provides excellent

uncertainty quantification. In particular, GSVB–B provides better coverage of the non-zero

coefficients than GSVB–D, which can be justified by the set size. As in our comparison to

MCMC we notice that there is an increase in the posterior set size as the difficulty of the

setting increases, i.e. when there is an increase in the correlation of the design matrix.

6 Real data analysis

This section presents the analysis of two real world datasets with a third dataset analysis

included in the Supplementary Material4. The first problem is a linear regression problem

wherein p≫ n for which GSVB and SSGL are applied. The second is a logistic regression

problem where p < n, for which the logistic group LASSO is applied in addition to GSVB

and SSGL. As before, a0 = 1, b0 =M and GSVB was ran with a value of λ = 1. For SSGL,

we let λ1 = 1 and λ0 was chosen via five fold cross validation on the training set.

Overall, our results highlight that GSVB achieves state-of-the-art performance, produc-

ing parsimonious models with excellent predictive accuracy. Furthermore, in our analysis

of the two datasets, variational posterior predictive distributions are constructed. These

highlight the practical utility of GSVB, demonstrating how uncertainty in the predictions

is quantified – an added benefit otherwise not available via MAP methods such as SSGL.

4R scripts used to produce these results are available at https://github.com/mkomod/p3
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Figure 2: Performance evaluation of GSVB and SSGL for Settings 1–4 with p = 5, 000 across

100 runs. For each method the white diamond (⋄) indicates the median of the metric, the

thick black line ( ) the interquartile range, and the black line ( ) 1.5 times the in-

terquartile range. Rows 1 – 2: Gaussian family with (n,m, s) = (500, 10, 10), (500, 10, 20).

Row 3: Binomial family with (n,m, s) = (1000, 5, 5). Row 4: Poisson family with

(n,m, s) = (1000, 5, 3). Note that for the Binomial family Setting 1 results in perfect

separation of classes and is excluded from the study.
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6.1 Bardet-Biedl Syndrome Gene Expression Study

The first dataset we examine is of microarray data, consisting of gene expression measure-

ments for 120 laboratory rats5. Originally the dataset was studied by Scheetz et al. (2006)

and has subsequently been used to demonstrate the performance of several group selection

algorithms (Huang and Zhang, 2010; Breheny and Huang, 2015; Bai et al., 2020). Briefly,

the dataset consists of normalized microarray data harvested from the eye tissue of 12 week

old male rats. The outcome of interest is the expression of TRIM32 a gene known to cause

Bardet-Biedl syndrome, a genetic disease of multiple organs including the retina.

To pre-process the original dataset, which consists of 31,099 probe sets (the predictors),

we follow Breheny and Huang (2015) and select the 5,000 probe sets which exhibit the

largest variation in expression on the log scale. Further, following Breheny and Huang

(2015) and Bai et al. (2020) a non-parametric additive model is used, wherein, yi = µ +∑p
j=1 fj(xij) + ϵi with ϵi ∼ N(0, τ 2) and fj : R → R. Here, yi ∈ R corresponds to the

expression of TRIM32 for the ith observation, and xij the expression of the jth probe

set for the ith observation. To approximate fj a three term natural cubic spline basis

expansion is used. The resulting processing gave a group regression problem with n = 120

and M = 1,000 groups of size m = 3. Denoting by ϕj,k the kth basis for fj, we have

yi = µ+
M∑
j=1

m∑
k=1

ϕj,k(xij) + ϵi . (24)

The performance of the methods is evaluated a ten-fold cross validation, where the

methods are fit to the validation set and the test set is used for evaluation. More details

about the computation of the metrics used to assess method performance can be found in

the Supplementary Material.Overall, GSVB performed excellently, in particular GSVB–D

obtained a smaller 10-fold cross validated MSE and model size than SSGL, meaning the

5available at ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE5nnn/GSE5680/matrix/
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models produced are parsimonious and comparably predictive to those of SSGL (Table 1).

Furthermore, the PP coverage is excellent, particularly for GSVB–D which has a larger PP

coverage than GSVB–B, whilst also having a smaller PP interval length.

Method MSE Num. selected groups PP. coverage PP. length

GSVB-D 0.017 (0.019) 1.10 (0.316) 0.983 (0.035) 0.5460 (0.100)

GSVB-B 0.018 (0.013) 1.50 (0.527) 0.950 (0.070) 0.5673 (0.091)

SSGL 0.019 (0.001) 2.30 (1.060) – –

Table 1: Bardet-Biedl Syndrome Gene Expression Study, evaluation metrics computed on

the held out test data. Average (sd.) over the 10 folds for the metrics are provided: mean

squared error, number of selected groups, posterior predictive coverage, and mean posterior

predictive interval length. Notably, GSVB failed to converge on the third fold.

To identify genes associated with TRIM32 expression, GSVB was ran on the full

dataset. Both methods identify one gene each, with GSVB–D identifying Clec3a and

GSVB–B identifying Slc25a34. Interestingly, the MSE was 0.012 and 0.008 for each method,

suggesting Slc25a34 is more predictive of TRIM32 expression. Further, the PP coverage

was 0.960 for both methods and the PP interval length was 0.460 and 0.367 for GSVB–D

and GSVB–B, reflecting there is less uncertainty in the prediction under GSVB–B.

6.2 MEMset splice site detection

The following application is based on the prediction of short read DNA motifs, a task

which plays an important role in many areas of computational biology. For example, in

gene finding, wherein algorithms such as GENIE (Burge and Karlin, 1997) rely on the

prediction of splice sites (regions between coding and non-coding DNA segments).

The MEMset donor data has been used to build predictive models for splice sites and
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consists of a large training and test set6. The original training set contains 8,415 true

and 179,438 false donor sites and the test set 4,208 true and 89,717 false donor sites. The

predictors are given by 7 factors with 4 levels each (A, T, C, G), a more detailed description

is given in Yeo and Burge (2004). Initially analyzed by Yeo and Burge (2004), the data

has subsequently been used by Meier et al. (2008) to evaluate the logistic group LASSO.

To create a predictive model we follow Meier et al. (2008) and consider all 3rd order

interactions of the 7 factors, which gives a total ofM = 64 groups and p = 1, 156 predictors.

To balance the sets we randomly sub-sampled the training set without replacement, creating

a training set of 1,500 true (Y = 1) and 1,500 false donor sites. Regarding the test set a

balanced set of 4,208 true and 4,208 false donor sites was created.

In addition to GSVB, we fit SSGL and group LASSO (used in the original analysis),

for which we performed 5-fold cross validation to tune the hyperparameters. To assess the

different methods, we use the test data, dividing it into 10 folds, and reporting the: (i)

precision
(

TP
TP + FP

)
, (ii) recall

(
TP

TP + FN

)
, (iii) F-score

(
TP

TP + 0.5FP + 0.5FN

)
, (iv) AUC, and

(v) the maximum correlation coefficient between true class membership and the predicted

membership over a range of thresholds, ρmax, as used in Yeo and Burge (2004) and Meier

et al. (2008). In addition we report (vi) the number selected groups, which for the group

LASSO is given by the number which have a non-zero ℓ2,1 norm.

Overall the methods performed comparably. With GSVB–D obtaining the largest recall

and the group LASSO the largest precision, F-score, AUC, and ρmax by a small margin

(Table 2). However, GSVB returned models that were of smaller size and therefore more

parsimonious than those of SSGL and the group LASSO. This is further highlighted in

Figure 5 (found in the Supplementary Material), which showcases the fact that the models

obtained by GSVB are far simpler, selecting groups 1–7 as well as the interactions between

6available at http://hollywood.mit.edu/burgelab/maxent/ssdata/
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Method Precision Recall F-score AUC ρmax Num. selected groups

GSVB–D 0.915 (0.013) 0.951 (0.011) 0.933 (0.009) 0.975 (0.004) 0.870 (0.016) 10

GSVB–B 0.916 (0.011) 0.958 (0.013) 0.936 (0.008) 0.975 (0.004) 0.875 (0.016) 12

SSGL 0.921 (0.012) 0.950 (0.011) 0.935 (0.009) 0.977 (0.004) 0.879 (0.015) 48

Group LASSO 0.924 (0.013) 0.952 (0.010) 0.938 (0.010) 0.977 (0.004) 0.882 (0.016) 60

Table 2: Memset splice site detection, evaluation metrics computed on the held out test

data. The test set was split into 10 folds and the mean (sd.) of the metrics are computed.

groups 2:4 and 6:7 for both methods, with GSVB–D selecting 5:7 and GSVB–B selecting

2:6, 4:6 and 2:4:6 in addition to these. Further, Figure 5 showcases the fact that uncertainty

is available about the norms of the groups.

7 Discussion

In this manuscript we have introduced GSVB, a scalable method for group sparse gen-

eral linear regression. We have shown how a fast co-ordinate ascent variational inference

algorithms can be constructed and used to compute the variational posterior. We have

provided theoretical guarantees for the proposed VB approach in the setting of grouped

spare linear regression by extending the theoretical work of Castillo et al. (2015) and Ray

and Szabó (2022) for group sparse settings. Through extensive numerical studies we have

demonstrated that GSVB provides state-of-the-art performance, offering a computationally

inexpensive substitute to MCMC, whilst also performing comparably or better than MAP

methods. Additionally, through our analysis of real world datasets we have highlighted the

practical utility of our method. Demonstrating, that GSVB provides parsimonious mod-

els with excellent predictive performance, and as demonstrated in Appendix E.1, selects
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variables with established biological significance. Finally, different to MAP and frequentist

methods, GSVB provides scalable uncertainty quantification, which serves as a powerful

tool in several application areas.
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SUPPLEMENTARY MATERIAL

A Co-ordinate ascent algorithms

Derivations are presented for the variational family Q′, noting that Q ⊂ Q′, hence the

update equations under Q follow directly from those under Q′. Recall, the family is given

as,

Q′ =

{
Q′(µ,Σ, γ) =

M⊗
k=1

Q′
k(µGk

,ΣGk
, γk) :=

M⊗
k=1

[γk N (µGk
,ΣGk

) + (1− γk)δ0]

}
(25)

where Σ ∈ Rp×p is a covariance matrix for which Σij = 0, for i ∈ Gk, j ∈ Gl, k ̸= l (i.e. there

is independence between groups) and ΣGk
= (Σij)i,j∈Gk

∈ Rmk×mk denotes the covariance

matrix of the kth group.

A.1 Gaussian Family

Under the Gaussian family, Yi
iid∼ N(x⊤i β, τ

2), and the log-likelihood is given by,

ℓ(D; β, τ 2) = −n
2
log(2πτ 2)− 1

2τ 2
∥y −Xβ∥2.

Recall, we have chosen to model τ 2 by an inverse-Gamma prior which has density,

ba

Γ(a)
x−a−1 exp

(
−b
x

)
where a, b > 0 and in turn we extend Q′ to Q′

τ = Q′ × {Γ−1(a′, b′) : a′, b > 0}.

Under this variational family, the expectation of the negative log-likelihood is given by,

EQ′
τ
[−ℓ(D; β)] = EQ′

τ

[
n

2
log(2πτ 2) +

1

2τ 2
∥y −Xβ∥2

]
= EQ′

τ

[
n

2
log(2πτ 2) +

1

2τ 2
(
∥y∥2 + ∥Xβ∥2 − 2⟨y,Xβ⟩

)]
=
n

2
(log(2π) + log(b′)− κ(a′))
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+
a′

2b′

(
∥y∥2 +

(
p∑

i=1

p∑
j=1

(X⊤X)ijEQ′
τ
[βiβj]

)
− 2

M∑
k=1

γk⟨y,XGk
µGk
⟩

)
(26)

where the expectation

EQ′
τ
[βiβj] =


γk (Σij + µiµj) i, j ∈ Gk

γkγhµiµj i ∈ Gk, j ∈ Gh, h ̸= k

A.2 Binomial Family Re-parameterization

To re-parametrization of ΣGk
we follow the same process as in Section 3.2.1. Formally, we

have,

ΣGk
= (X⊤

Gk
AtXGk

+ wI)−1 (27)

where w ∈ R is the free parameter to be optimized and At = diag(a(t1), . . . , a(tn)). Notably,

this result follows due to the quadratic nature of the bound employed. Meaning we are

able to re-parameterize ΣGk
.

B Derivation of Variational Posterior Predictive

To compute the variational posterior predictive distribution for the Binomial and Poisson

model, we sample β ∼ Π̃ and then sample y∗|x∗,D from the respective distribution with

mean given by f(x ∗⊤ β) where x∗ ∈ Rp and f is the link function. To sample from Π̃

we sample zk
ind∼ Bernoulli(γk) and then βGk

ind∼ N(µGk
,ΣGk

) if zk = 1 otherwise we set

βGk
= 0mk

.

For the Gaussian family we are able to simplify the process by integrating out the

variance τ 2. Following Murphy (2007), substituting ξ = τ 2 and recalling the independence
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of τ 2 and β in our variational family, we have,

p̃(y∗|x∗,D) ∝
∫
Rp

∫
R+

ξ−(a′+1/2)−1 exp

(
−(y∗ − x∗⊤β)2 + 2b′

2ξ

)
dξ dΠ̃(β)

∝
∫
Rp

(
(y∗ − x∗⊤β)2

2b′
+ 1

)−(a′+1/2)

dΠ̃(β)

Recognizing that the expression within the integral has the same functional form as a gener-

alized t-distribution, whose density is denoted as t(x;µ, σ2, ν) = Γ((ν+1)/2)/(Γ(ν/2)
√
νπσ)(1+

(x− µ)2/(νσ2))−(ν+1)/2, yields,

p̃(y∗|x∗,D) =
∫
Rp

t(y∗;x∗⊤β, b′/a′, 2a′) dΠ̃(β) (28)

As (28) is intractable we instead sample from p(y∗|x∗,D), by

1. Sampling β ∼ Π̃.

2. Sampling y∗ from Y ∗ = µ + σtν where µ = x∗⊤β, σ =
√
b′/a′ and ν = 2a′, where tν

denotes a t-distribution with ν degrees of freedom.

C Gibbs Sampler

We present a Gibbs sampler for the Gaussian family of models, noting that the samplers

for the Binomial and Poisson family use the same principles. We begin by considering a

slight alteration of the prior given in (2). Formally,

βGk

ind∼ Ψ(βGk
;λ)

zk|θk
ind∼ Bernoulli(θk)

θk
iid∼ Beta(a0, b0)

(29)

for k = 1, . . . ,M and τ 2 = ξ
iid∼ Γ−1(ξ; a, b). Under this prior writing the likelihood as,

p(D|β, z, ξ) =
n∏

i=1

ϕ

(
yi; f

(
M∑
k=1

zk⟨xGk
, βGk
⟩

)
, ξ

)
(30)
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where ϕ(·;µ, σ2) is the density of the Normal distribution with mean µ and variance σ2,

and f is the link function (which in this case is the identity), yields the posterior

p(β, z, ξ|D) ∝ p(D|β, z, ξ)π(ξ)
M∏
k=1

π(βGk
)π(zk|θk)π(θk). (31)

Notably, the posterior is equivalent to our previous formulation.

To sample from (31), we construct a Gibbs sampler as outlined in Algorithm 2. Ignoring

the superscript for clarity, the distribution θk|D, β, z, θ−k, ξ is conditionally independent of

D, β, z−k, ξ and θ−k. Therefore, θk is sampled from θk|zk, which has a Beta(a0+zk, b0+1−zk)

distribution. Regarding z
(i)
j , the conditional density

p(zk|D, β, z−k, θ, ξ) ∝ p(D|β, z−k, zk, θ, ξ)π(zk|β, z−k, θ, ξ).

= p(D; β, z, ξ)π(zk|θk). (32)

As zk is discrete, evaluating the RHS of (32) for zk = 0 and zk = 1, gives the unnor-

malised conditional probabilities. Summing gives the normalisation constant and thus we

can sample zk from a Bernoulli distribution with parameter

pk =
p(zk = 1|D, β, z−k, θ, ξ)

p(zk = 0|D, β, z−k, θ, ξ) + p(zk = 1|D, β, z−k, θ, ξ)
. (33)

Finally, regarding β
(i)
Gk,j

we use a Metropolis-Hastings within Gibbs step, wherein a proposal

β
(i)
Gk,j

is sampled from a random-walk proposition kernel K, where in our implementation

K(x|ϑ, ε) = N(x;ϑ,
√
2 (101−ε)

1/2
). The proposal is then accepted with probability A or

rejected with probability 1− A, in which case β
(i)
Gk,j
← β

(i−1)
Gk,j

, where A is given by,

A = min

(
1,

p(D; βGc
k
, βGk,−j, β

(i)
Gk,j

, z, ξ)π(β
(i)
Gk,j
|βGk,−j)

p(D; βGc
k
, βGk,−j, β

(i−1)
Gk,j

, z, ξ)π(β
(i−1)
Gk,j
|βGk,−j)

K(β
(i−1)
j |β(i)

j , z
(i)
k )

K(β
(i)
j |β

(i−1)
j , z

(i−1)
k )

)
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Algorithm 2 MCMC sampler for the Gaussian family GSpSL regression

Initialize β(0), z(0), θ(0), ξ(0)

for i = 1, . . . , N

for k = 1, . . . ,M

θ
(i)
k

iid.∼ Beta(a0 + z
(i−1)
k , b0 + 1− z(i−1)

k )

for k = 1, . . . ,M

z
(i)
k

ind.∼ Bernoulli(pk)

for k = 1, . . . ,M

for j = 1, . . . ,mk

β
(i)
Gk,j
∼ p(β

(i)
Gk,j
|D, z(i), β(i)

G1:k−1
, β

(i)
Gk,1:j−1

, β
(i−1)
Gk,j+1:mk

, β
(i−1)
Gk+1:M

, ξ(i−1))

Sample ξ(i)
iid.∼ Γ−1(a+ 0.5n, b+ 0.5∥y −

∑M
k=1 zkXGk

β
(i)
Gk
∥2)

return {β(i), z(i), θ(i), ξ(i)}Ni=1.

D Numerical Study

D.1 Performance with large groups

The performance of GSVB with large groups is examined. For this we fix (n, p, s) =

(1, 000, 5, 000, 10) and vary the group size to be m = 10, 20, 25, 50, 100. The results, pre-

sented in Figure 3 highlight that the performance of the method is excellent for groups

of size m = 10, 20, 25, and begins to suffer when groups are of size m = 50 and 100,

particularly in settings 3 and 4 wherein GSVB–B did not run.
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Figure 3: Performance evaluation of GSVB and SSGL for Settings 1–4 with (n, p, s) =

(1, 000, 5, 000, 10) across 100 runs. For each method the white diamond (⋄) indicates the

median of the metric, the thick black line ( ) the interquartile range, and the black

line ( ) 1.5 times the interquartile range. Rows 1–5: Gaussian family with increasing

group sizes of m = 10, 20, 25, 50, 100. 41



D.2 Runtime

Runtimes for the experiments presented in Section 5 are presented in Table 3 and Table 4.

Notably, the runtime for GSVB over MCMC is orders of magnitudes faster. The runtime

of GSVB in comparison to SSGL is slower in Settings 4, but marginally slower in the

remaining settings. Note all simulations were ran on AMD EPYC 7742 CPUs (128 core,

1TB RAM).

Method Setting 1 Setting 2 Setting 3 Setting 4

Gaus.

s=5

GSVB–D 2.1s (1.6s, 3.0s) 1.8s (1.1s, 2.9s) 3.5s (1.6s, 8.0s) 2.2s (1.6s, 5.2s)

GSVB–B 1.8s (1.2s, 2.9s) 2.0s (1.3s, 3.1s) 3.4s (1.7s, 7.3s) 2.6s (1.8s, 6.7s)

MCMC 7m 53s (7m 31s, 8m 12s) 7m 55s (7m 34s, 8m 2s) 7m 44s (7m 20s, 7m 48s) 8m 14s (7m 49s, 8m 17s)

Gaus.

s=10

GSVB–D 2.3s (1.7s, 3.8s) 2.6s (1.9s, 3.9s) 7.4s (2.9s, 9.7s) 4.2s (2.4s, 12.1s)

GSVB–B 2.9s (1.8s, 4.5s) 2.6s (2.2s, 3.2s) 9.5s (4.8s, 13.9s) 4.3s (2.7s, 14.0s)

MCMC 9m 55s (9m 45s, 10m 8s) 10m 13s (9m 48s, 10m 30s) 9m 19s (9m 24s, 9m 33s) 10m 11s (9m 46s, 10m 27s)

Binom.

s=3

GSVB–D - 5.5s (3.5s, 9.3s) 7.7s (3.7s, 12.0s) 5.2s (2.7s, 8.0s)

GSVB–B - 7.2s (6.0s, 11.9s) 7.8s (5.6s, 14.4s) 6.0s (3.7s, 9.5s)

MCMC - 16m 45s (16m, 17m 15s) 16m 45s (15m 45s, 17m) 15m 45s (14m 49s, 16m 30s)

Pois.

s=2

GSVB–D 3.6s (3.3s, 4.1s) 3.3s (2.9s, 3.7s) 3.1s (2.9s, 5.2s) 3.4s (2.4s, 4.1s)

GSVB–B 12.5s (10.0s, 18.0s) 10.1s (7.9s, 14.5s) 15.5s (10.1s, 41.6s) 13.3s (10.5s, 24.0s)

MCMC 15m 45s (14m 49s, 16m 45s) 15m 45s (15m 15s, 16m 30s) 16m (14m 59s, 18m) 18m 30s (16m 45s, 19m 45s)

Table 3: Median (5%, 95% quartile) runtimes for numerical experiments presented in

Figure 1. Note (n, p) = (200, 1000) for the Gaussian family and (n, p) = (400, 1000) for the

Binomial and Poisson family. Note that under setting 1 for the Binomial family there is

perfect separation.
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Method Setting 1 Setting 2 Setting 3 Setting 4

Gaus.

m=10,

s=10

GSVB–D 59.1s (47.2s, 1m 16s) 54.3s (47.5s, 1m 8s) 2m 53s (1m 4s, 6m 35s) 8m 7s (4m 30s, 25m 36s)

GSVB–B 57.7s (50.7s, 1m 18s) 57.0s (49.5s, 1m 14s) 2m 51s (1m 7s, 6m 38s) 9m 45s (4m 53s, 25m 40s)

SSGL 1m 3s (59.5s, 1m 13s) 50.8s (41.6s, 59.5s) 1m 1s (58.1s, 1m 16s) 1m 24s (1m 11s, 2m 3s)

Gaus.

m=10,

s=20

GSVB–D 3m 7s (3m 46s, 4m 31s) 3m 13s (3m 42s, 4m 39s) 9m 42s (3m 56s, 14m 54s) 20m 48s (6m 38s, 39m 23s)

GSVB–B 3m 29s (3m 6s, 4m 20s) 3m 23s (3m 57s, 4m 48s) 12m 18s (4m 59s, 16m 20s) 34m 59s (12m 54s, 45m 2s)

SSGL 2m 42s (1m 23s, 2m 3s) 1m 16s (59.2s, 2m 40s) 2m 6s (2m 37s, 2m 30s) 2m 16s (2m 31s, 6m 32s)

Binom.

m=5,

s=5

GSVB–D - 3m 43s (2m 54s, 4m 54s) 2m 26s (2m 34s, 4m 5s) 2m 50s (1m 16s, 3m 30s)

GSVB–B - 4m 32s (3m 40s, 5m 8s) 3m 26s (2m 20s, 5m 26s) 2m 25s (2m 47s, 5m 18s)

SSGL - 2m 54s (2m 44s, 3m 42s) 3m 33s (2m 57s, 3m 26s) 2m 40s (2m 31s, 2m 3s)

Pois.

m=5,

s=3

GSVB–D 16.3s (9.8s, 21.5s) 11.2s (8.2s, 20.8s) 16.0s (10.4s, 43.0s) 12.9s (8.6s, 48.7s)

GSVB–B 2m 26s (2m 59s, 3m 20s) 2m 55s (1m 29s, 3m 20s) 3m 53s (2m 49s, 9m 25s) 3m 33s (2m 4s, 9m 11s)

SSGL 4m 11s (3m 49s, 8m 38s) 4m 34s (2m 11s, 13m 4s) 2m 29s (2m 56s, 16m 33s) 2m 32s (1m 25s, 3m 2s)

Table 4: Median (5%, 95% quartile) runtimes for numerical experiments presented in

Figure 2. Note (n, p) = (500, 5000) for the Gaussian family and (n, p) = (1000, 5000)

for the Binomial and Poisson family. Note that under setting 1 for the Binomial family

there is perfect separation
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E Real data analysis

E.1 Genetic determinants of Low-density Lipoprotein in mice

Here we analyze a dataset from the Mouse Genome Database (Blake et al., 2021) and

consists of p = 10,346 single nucleotide polymorphisms (SNPs) collected from n = 1,637

laboratory mice. Notably, each SNP, xij for j = 1, . . . , p and i = 1, . . . , n, takes a value of

0, 1 or 2. This value indicates how many copies of the risk allele are present. Alongside

the genotype data, a phenotype (response) is also collected. The phenotype we consider

is low-density lipoprotein cholesterol (LDL-C), which has been shown to be a major risk

factor for conditions like coronary artery disease, heart attacks, and strokes (Silverman

et al., 2016).

To pre-process the original dataset SNPs with a rare allele frequency, given by RAFj =

1
2n

∑n
i=1 (I(xij = 1) + 2I(xij = 2)) for j = 1, . . . , p, below the first quartile were discarded.

Further, due to the high colinearity, covariates with | corr(xj, xk)| ≥ 0.97 for k > j, j =

1, . . . , p − 1, were removed. After pre-processing, 3,341 SNPs remained. These were used

to construct groups by coding each xij : {0, 1, 2} 7→ {(0, 0), (0, 1), (1, 1)}, in turn giving

groups of size m = 2.

To evaluate the methods ten fold cross validation is used. Specifically, methods are fit

to the validation set and the test set is used for evaluation. This is done by computing the:

(i) MSE between the true and predicted value of the response, given by 1
ñ
∥y −Xβ̂∥ where

ñ is the size of the test set, (ii) posterior predictive (PP) coverage, which measures the

proportion of times the response is included in the 95% PP set, and (iii) the average size of

the 95% PP set. In addition, (iv) the number of groups selected, given by
∑M

k=1 I(γk > 0.5)

is also reported.
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Importantly the PP distribution is available for GSVB, and given by, p̃(y∗|x∗,D) =∫
Rp×R+ p(y

∗|β, τ 2, x∗,D) dΠ̃(β, τ 2) where x∗ ∈ Rp is a feature vector (see Section B of

the Supplementary material for details). In genetics studies, x∗⊤β, is referred to as the

polygenic risk score and is commonly used to evaluate genetic risk. While frequentist or

MAP methods offer only point estimates, Figure 4 demonstrates that GSVB can offer a

distribution for this score, highlighting the uncertainty associated with the estimate.
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Figure 4: Genetic determinants of LDL-C in mice, variational posterior predictive distri-

bution for GSVB-D (panels A.1 - D.1) and GSVB-B (panels A.2 - D.2) constructed for

four observations in the held out test set (fold 1). Notably the red line ( ) represents

the measured LDL-C level, with the adjacent text giving this value (y∗) and the posterior

mean (ŷ). The shading of the variational posterior indicates where 90%, 95% and 99% of

the mass is contained.

Regarding the performance of each method results are presented in Table 5, these high-
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light that GSVB performs excellently obtaining parsimonious models with a comparable

MSE to SSGL. In addition, GSVB provides impressive uncertainty quantification, yielding

a coverage of 0.945 and 0.941 for GSVB–D and GSVB–B respectively. The SNPs selected

by GSVB–D and GSVB-B are similar and reported in Table 6 of the Supplementary ma-

terial. When the methods are fit to the full dataset, the SNPs selected by both method

are: rs13476241, rs13477968, and rs13483814, with GSVB–B selecting rs13477939 in

addition. Notably, rs13477968 corresponds to the Ago3 gene, which has been shown to

play a role in activating LDL receptors, which in turn regulate LDL-C (Matsui et al., 2010).

Method MSE Num. selected groups PP. coverage PP. length

GSVB-D 0.012 (0.002) 3.50 (0.527) 0.945 (0.027) 0.425 (0.005)

GSVB-B 0.012 (0.002) 4.00 (0.667) 0.941 (0.029) 0.421 (0.005)

SSGL 0.012 (0.002) 57.40 (5.481) - -

Table 5: Genetic determinants of LDL-C in mice, evaluation of methods on the held out

genotype data. Reported is the 10 fold cross validated MSE, the number of selected groups,

the posterior predictive coverage, and mean posterior predictive interval length.

46



RSID (or probe ID) Freq. GSVB-D Freq. GSVB-B

rs13476279 6 6

rs13483823 6 5

CEL.4 130248229 5 3

rs13477968 3 5

rs13476241 4 3

CEL.X 65891570 2 4

rs13477903 2 2

rs3688710 2 1

rs13477939 1 -

rs3157124 1 -

rs13478204 - 3

rs6186902 - 2

rs13483814 - 1

rs4222922 - 1

rs6187266 - 1

UT 4 128.521481 - 1

Table 6: Genetic determinants of LDL-C in mice: SNPs selected by GSVB.
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E.2 Bardet-Biedl Syndrome Gene Expression Study

Probe ID Gene Name Freq. GSVB-D Freq. GSVB-B Freq. SSGL

1383183 at 1 1 8

1386237 at 1 1 -

1397359 at 4 2 -

1386552 at - 1 -

1378682 at - 1 -

1385926 at - - 2

1396814 at - - 3

1386811 at Hacd4 1 2 -

1386069 at Sp2 4 2 -

1371209 at RT1-CE5 - 1 -

1391624 at Sec14l3 - 1 -

1383829 at Bbx - 2 -

1389274 at Dcakd - - 1

1373995 at Abcg1 - - 1

1375361 at Snx18 - - 1

1368915 at Kmo - - 7

Table 7: Bardet-Biedl syndrome gene expression study: variables selected by GSVB and

SSGL.
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E.3 MEMset splice site detection
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Figure 5: MEMset splice site detection, comparison of ℓ2-norms for each group of coefficients

β̂Gk
for k = 1, . . . , 64. The red dotted line ( ) shows groups which have been selected

by more than one method. The points indicate ∥β̂Gk
∥ where β̂Gk

is the posterior mean for

GSVB, the MAP for SSGL and the MLE estimate under the group LASSO. The points

are coloured in black (•) when they are non-zero and grey (•) otherwise. Finally when

available the 95% credible set for ∥βGk
∥ is given by the solid black line ( ).
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F Proofs of asymptotic results

F.1 A general class of model selection priors and an overview of

the proof

Our theoretical results apply to a wider class of model selection priors than the group

spike and slab prior (2) underlying our variational approximation. In this section, we thus

consider this more general class of model selection priors Castillo et al. (2015); Ning et al.

(2020); Ray and Szabó (2022) defined hierarchically via:

s ∼ πM(s)

S||S| = s ∼ UnifM,s

βGk
∼ind


Ψλ,mk

(βGk
), Gk ∈ S,

δ0, Gk ̸∈ S,

(34)

where πM is a prior on {0, 1, . . . ,M}, UnifM,s is the uniform distribution on subsets S ⊆

{1, . . . ,M} of size s and

Ψλ,mk
(βGk

) = ∆mk
λmk exp (−λ∥βGk

∥2) (35)

is a density on Rmk with ∆mk
= 2−mkπ(1−mk)/2Γ((mk + 1)/2)−1. This can be concisely

written as

(S, β) 7→ πM(|S|) 1(
M
|S|

)δ0(Sc)
∏
Gk∈S

Ψλ,mk
(βGk

). (36)

Following Castillo et al. (2015); Ning et al. (2020); Ray and Szabó (2022), we assume as

usual that

A1M
−A3πM(s− 1) ≤ πM(s) ≤ A2M

−A4πM(s− 1), s = 1, . . . ,M. (37)
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We further recall the assumption (38) made on the scale parameter:

λ ≤ λ ≤ 2λ̄, λ =
∥X∥

M1/mmax
, λ̄ = 3∥X∥

√
logM. (38)

The group spike and slab prior fits within this framework by taking πM = Bin(M, a0
a0+b0

),

and hence the following results immediately imply Theorems 1 and 2. Recall the parameter

set

Bρn,sn = {β0 ∈ Rp : ϕ(Sβ0) ≥ c0, |Sβ0| ≤ sn, ϕ̃(ρn|Sβ0|) ≥ c0}

defined in (23).

Theorem 3 (Contraction). Suppose that Assumption (K) holds, the prior satisfies (37)-

(38) and sn satisfies mmax log sn ≤ K ′ logM for some K ′ > 0. Then the variational

posterior Π̃ based on either the variational family Q in (5) or Q′ in (6) satisfies, with

s0 = |Sβ0|,

sup
β0∈Bρn,sn

Eβ0Π̃

(
β : ∥X(β − β0)∥2 ≥

H0ρ
1/2
n

√
s0 logM

ϕ̄(ρns0)

)
→ 0

sup
β0∈Bρn,sn

Eβ0Π̃

(
β : ∥β − β0∥2,1 ≥

H0ρns0
√
logM

∥X∥ϕ̄(ρns0)2

)
→ 0,

sup
β0∈Bρn,sn

Eβ0Π̃

(
β : ∥β − β0∥2 ≥

H0ρ
1/2
n

√
s0 logM

∥X∥ϕ̃(ρns0)2

)
→ 0,

for any ρn →∞ (arbitrarily slowly), Bρn,sn defined in (23) and where H0 depends only on

the prior.

Theorem 4 (Dimension). Suppose that Assumption (K) holds, the prior satisfies (37)-(38)

and sn satisfies mmax log sn ≤ K ′ logM for some K ′ > 0. Then the variational posterior Π̃

based on either the variational family Q in (5) or Q′ in (6) satisfies

sup
β0∈Bρn,sn

Eβ0Π̃ (β : |Sβ| ≥ ρn|Sβ0 |)→ 0

for any ρn →∞ (arbitrarily slowly) and Bρn,sn defined in (23).
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To prove Theorems 3 and 4, we use the following result which relates the VB probability

of sets having exponentially small probability under the true posterior.

Lemma 1 (Theorem 5 of Ray and Szabó (2022)). Let Bn be a subset of the parameter

space, An be events and Qn be distributions for β. If there exists C > 0 and δn > 0 such

that

Eβ0Π(β ∈ Bc
n|Y )1An ≤ Ce−δn ,

then

Eβ0Qn(β ∈ Bc
n)1An ≤

2

δn

[
Eβ0DKL(Qn∥Π(·|Y ))1An + Ce−δ/2

]
.

The proof thus reduces to finding events An with Pβ0(An)→ 1 on which:

1. The true posterior places only exponentially small probability outside Bn, that is

Π(Bc
n|Y ) ≤ Ce−δn for some rate δn →∞,

2. The DKL-divergence between the VB posterior Π̃ and the full posterior is o(δn).

In our setting, we shall take δn = Cs0 logM . Full posterior results are dealt with in Section

F.2, the DKL-divergence in Section F.3 and the proofs of Theorems 3 and 4 are completed

in Section F.4.

F.2 Asymptotic theory for the full posterior

We now establish contraction rates for the full computationally expensive posterior distri-

bution, keeping track of the exponential tail bounds needed to apply Lemma 1. While the

proofs in this section largely follow those in Castillo et al. Castillo et al. (2015), the precise

arguments adapting these results to the group sparse setting are rather technical and hence

we provide them for convenience. We first establish a Gaussian tail bound in terms of the

group structure.
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Lemma 2. The event

T0 =
{

max
k=1,...,M

∥XT
Gk
(Y −Xβ0)∥2 ≤ 3∥X∥

√
logM

}
(39)

satisfies supβ0∈Rp Pβ0(T c
0 ) ≤ 2/M .

Proof. Since Y − Xβ0 = ε ∼ Nn(0, In) under Pβ0 , applying a union bound over the

group structure yields Pβ0(maxk ∥XT
Gk
(Y − Xβ0)∥2 > t) ≤

∑M
k=1 Pβ0(∥XT

Gk
ε∥2 > t). Re-

call that for a multivariate normal W ∼ Nm(0,Σ), we have P (∥W∥2 − E∥W∥2 ≥ x) ≤

2 exp(−x2/(2E∥W∥22)) by Corollary 3 of Pinelis and Sakhanenko (1986). Since XT
Gk
ε ∼

Nmk
(0, XT

Gk
XGk

), this implies

(E∥XT
Gk
ε∥2)2 ≤ E∥XT

Gk
ε∥22 = Tr(XT

Gk
XGk

) ≤ ∥X∥2,

and hence P (∥XT
Gk
ε∥2 ≥ ∥X∥+ x) ≤ 2 exp(−x2/(2∥X∥2)) for any x > 0. Substituting this

bound with x = 2∥X∥
√
logM into the above union bound thus yields

Pβ0(max
k
∥XT

Gk
(Y −Xβ0)∥∞ > 3∥X∥

√
logM) ≤ 2Me−2 logM = 2M−1.

Let ℓn(β) denote the log-likelihood of the Nn(Xβ, In)-distribution. For any β ∈ Rp, we

have log-likelihood ratio

Λβ(Y ) = eℓn(β)−ℓn(β0) = e−
1
2
∥X(β−β0)∥22+(Y−Xβ0)TX(β−β0). (40)

The next result establishes an almost sure lower bound on the denominator of the Bayes

formula. It follows Lemma 2 of Castillo et al. (2015), but must be adapted to account for

the uneven prior normalizing factors coming from the group structure.
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Lemma 3. Suppose Assumption (K) holds and that β0 ∈ Rp satisfies mmax log s0 ≤

K ′ logM for K ′ > 0. Then it holds that with Pβ0-probability one,∫
Λβ(Y )dΠ(β) ≥ Cπm(s0)s0!e

−λ∥β0∥2,1e−cs0 logM ,

where C, c > 0 depend only on K,K ′.

The mild condition mmax log s0 ≤ K ′ logM , which will be assumed throughout, relates

the true sparsity with the maximal group size. As in Assumption (K), the constant K ′ is

used to provide uniformity, but this can be ignored at first reading.

Proof. The bound trivially holds true for s0 = 0, hence we assume s0 ≥ 1. Write p0 :=∑
Gk∈S0

mk to be maximal number of non-zero coefficients in β0. In an abuse of notation,

we shall sometimes interchangeably use βS0 for both the vector in Rp0 and the vector in Rp

with the entries in Sc
0 set to zero. Using the form (36) of the prior,∫

Λβ(Y )dΠ(β) ≥ πM(s0)(
M
s0

) ∫
Rp0

Λβ(Y )
∏

Gk∈S0

Ψλ,mk
(βGk

)dβGk
.

By the change of variable bS0 = βS0 − β0,S0 and the form of the log-likelihood (40), the last

display is lower bounded by

πM(s0)(
M
s0

) e−λ∥β0∥2,1
∫
Rp0

e−
1
2
∥XS0

bS0
∥22+(Y−Xβ0)TXS0

bS0

∏
Gk∈S0

Ψλ,mk
(bGk

)dbGk
.

Define the measure µ on Rp0 by dµ(bS0) = e−
1
2
∥XS0

bS0
∥22
∏

Gk∈S0
Ψλ,mk

(bGk
)dbGk

. Let µ̄ =

µ/µ(Rp0) denote the normalized probability measure with corresponding expectation Eµ̄.

Defining Z(bS0) = (Y −Xβ0)TXS0bS0 , Jensen’s inequality implies Eµ̄e
Z ≥ eEµ̄Z = 1, since

Eµ̄Z = 0 as µ̄ is a symmetric probability distribution about zero. Thus the last display is

lower bounded by πm(s0)e
−λ∥β0∥2,1µ(Rp0)/

(
M
s0

)
, which equals

πM(s0)(
M
s0

) e−λ∥β0∥2,1
∫
Rp0

e−
1
2
∥XS0

bS0
∥22
∏

Gk∈S0

Ψλ,mk
(bGk

)dbGk
. (41)
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Using the group structure, ∥Xb∥2 = ∥
∑M

k=1X·Gk
bGk
∥2 ≤

∑M
k=1 ∥X·Gk

∥2∥bGk
∥2 ≤ ∥X∥∥b∥1

since ∥b∥2 ≤ ∥b∥1. Using the form (35) of the density Ψλ,mk
and recalling that∫

∥βS∥1≤r

(λ/2)|S|e−λ∥βS∥1dβS ≥ e−λr(λr)|S|/|S|!

by (6.2) in Castillo et al. (2015), the integral in the last display is bounded below by

e−1/2

∫
∥X∥∥bS0

∥1≤1

∏
Gk∈S0

∆mk
λmke−λ∥βGk

∥1dβGk

≥ e−1/2e−λ/∥X∥ λp0

∥X∥p0p0!
∏

Gk∈S0

∆mk
2mk .

(42)

Deviating from Castillo et al. (2015), we must now take careful account of the normalizing

constants ∆mk
.

Recall the form of the normalized constants ∆mk
= 2−mkπ(1−mk)/2Γ((mk+1)/2)−1. The

non-asymptotic upper bound in Stirling’s approximation for the Gamma function gives for

z ≥ 2: Γ(z) ≤
√
2π(z − 1)

(
z−1
e

)z−1
e

1
12(z−1) . Taking z = (mk + 1)/2 ≥ 2 for mk ≥ 3,

Γ((mk + 1)/2) ≤ 2
√
π(mk − 1)

(
mk − 1

2e

)(mk−1)/2

≤ 2e−1/2
√
πm

mk/2
k

1

(2e)(mk−1)/2
, (43)

where we have used that (mk−1
mk

)mk/2 ≤ limx→∞(1− 1
x
)x/2 = e−1/2 since the function in the

limit is strictly increasing on (1,∞). One can directly verify that the upper bound (43)

also holds for mk = 1, 2. Using (43),

∏
Gk∈S0

∆mk
2mk =

∏
Gk∈S0

π(1−mk)/2

Γ((mk + 1)/2)
≥ 1

(
√
2e−1)s0(2πe)p0/2

∏
Gk∈S0

m
−mk/2
k ≥ cp0 m−p0/2

max

for some universal constant c > 0. Using this last display, we lower bound (42) by a

constant multiple of

e−λ/∥X∥
(

λ

∥X∥

)p0 1

p0!
cp0m−p0/2

max .

Using (38), if λ/∥X∥ ≤ 1/2, then e−λ/∥X∥(λ/∥X∥)p0 ≥ e−1/2M−p0/mmax ≥ e−1/2e−s0 logM ,

while if λ/∥X∥ ≥ 1/2, then e−λ/∥X∥(λ/∥X∥)p0 ≥ e−6
√
logM2−p0 ≥ e−C(K)s0 logM since
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mmax ≤ K logM by assumption. Since also m
−p0/2
max /p0! ≥ e−2p0 log p0 ≥ e−2mmaxs0 log(mmaxs0),

the last display is lower bounded by e−Cs0 logM under the lemma’s hypotheses. The re-

sult then follows by substituting this lower bound for the integral in (41) and using that(
M
s0

)
≤M s0/s0! = es0 logM/s0!.

The next result follows Theorem 10 of Castillo et al. (2015).

Lemma 4 (Dimension). Suppose that Assumption (K) holds and the prior satisfies (37)

and (38). Further assume M > 0 is large enough that logM ≥ max{4mmax log 4
A2

, 4 logA2

A2
} and

M ≥ (4mmax+1/2A2)
1/A4. Then for any β0 ∈ Rp such that mmax log s0 ≤ K ′ logM and any

L > 0,

Eβ0Π(β : |Sβ| ≥ (L+ 1)s0|Y ) 1T0

≤ C(K,K ′) exp

{(
c(K,K ′, A2) +

144

ϕ(S0)2
− LA4

2

)
s0 logM

}
,

where s0 = |Sβ0| and T0 is the event (39).

Proof. Using Bayes formula with likelihood ratio (40) and Lemma 3, for any measurable

set B ⊂ Rp,

Π(B|Y )1T0 = 1T0

∫
B
Λβ(Y )dΠ(β)∫
Λβ(Y )dΠ(β)

≤ C
eλ∥β0∥2,1+cs0 logM

s0!πM(s0)

∫
B

1T0e
− 1

2
∥X(β−β0)∥22+(Y−Xβ0)TX(β−β0)dΠ(β)

(44)

for T0 the event defined in (39). Applying Cauchy-Schwarz on the event T0 gives

|(Y −Xβ0)TX(β−β0)| ≤ max
k=1,...,M

∥XT
Gk
(Y −Xβ0)∥2

M∑
k=1

∥βGk
−β0,Gk

∥2 ≤ λ̄∥β−β0∥2,1. (45)

Therefore, since (Y −Xβ)TX(β−β0) ∼ N(0, ∥X(β−β0)∥22) under Pβ0 , on T0, the integrand

in the second last display is bounded by

e−
1
2
∥X(β−β0)∥22Eβ0 [1T0e

(1− λ
2λ̄

)(Y−Xβ0)TX(β−β0)]e
λ
2
∥β−β0∥2,1 ≤ e−

1
2
[1−(1−λ/(2λ̄))2]∥X(β−β0)∥22e

λ
2
∥β−β0∥2,1
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and hence

Eβ0Π(B|Y )1T0 ≤ C
eλ∥β0∥2,1+cs0 logM

s0!πM(s0)

∫
B

e−
1
2
[1−(1−λ/(2λ̄))2]∥X(β−β0)∥22e

λ
2
∥β−β0∥2,1dΠ(β).

Arguing exactly as on p. 2007-8 in Castillo et al. (2015),

∥β0∥2,1 +
1

2
∥β − β0∥2,1 ≤

1

8λ̄
∥X(β − β0)∥22 +

8s0λ̄

∥X∥2ϕ(S0)2
− 1

4
∥β − β0∥2,1 + ∥β∥2,1

and hence

Eβ0Π(B|Y )1T0 ≤ C
ecs0 logM

s0!πM(s0)
e

8s0λ̄λ

∥X∥2ϕ(S0)
2

∫
B

e−
λ
4
∥β−β0∥2,1+λ∥β∥2,1dΠ(β). (46)

Setting now B = {β : |Sβ| > R} with R ≥ s0, the integral in the last display is bounded

by

∑
S:|S|>R

πM(|S|)(
M
|S|

) ∫
e−

λ
4
∥β−β0∥2,1

∏
Gk∈S

∆mk
λmkdβGk

=
∞∑

S:|S|>R

πM(|S|)(
M
|S|

) ∏
Gk∈S

4mk .

Using the prior condition (37), this is then bounded by

M∑
s=R+1

πM(s)4mmaxs ≤ πM(s0)4
mmaxs0

(
4mmaxA2

MA4

)R+1−s0 ∞∑
j=0

(
4mmaxA2

MA4

)j

.

Since 4mmaxA2/M
A4 ≤ 1/2 by the lemma hypothesis, the last sum is bounded by 2 and

hence the first term in (46) is bounded by

2C exp

{
cs0 logM +

8s0λλ̄

∥X∥2ϕ(S0)2
+mmaxs0 log 4 + (R + 1− s0) log(4mmaxA2/M

A4)

}
,

where C, c > 0 depend only on K,K ′ > 0. Taking R = (L + 1)s0 − 1, using the lemma

hypotheses and that λ ≤ 2λ̄ = 6∥X∥
√
logM , the last display is bounded by

2C exp

{(
c+

144

ϕ(S0)2
+

(L+ 1)mmax log 4

logM
+
L logA2

logM
− LA4

)
s0 logM

}
.

For M > 0 large enough that logM ≥ max{4mmax log 4
A2

, 2 logA2

A2
}, this is then bounded by

2C exp

{(
c+

144

ϕ(S0)2
+
A2

4
− LA4/2

)
s0 logM

}
.
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We next obtain a contraction rate for the full posterior underlying the variational ap-

proximation. The proof follows that of Theorem 3 of Castillo et al. (2015), modified for

the group setting.

Lemma 5 (Contraction). Suppose that Assumption (K) holds and the prior satisfies (37)

and (38). Further assume M > 0 is large enough that logM ≥ max{4mmax log 4
A2

, 4 logA2

A2
} and

M ≥ (4mmax+1/2A2)
1/A4. Then there exists a constant H0 = H0(A1, A3, A4) > 0 such that

for any β0 ∈ Rp such that mmax log s0 ≤ K ′ logM and any L > 0,

Eβ0Π

(
β : ∥X(β − β0)∥2 ≥

H0

√
(L+ 2)s0 logM

ϕ̄((L+ 2)s0)

∣∣∣∣∣Y
)
1T0

≤ C(K,K ′) exp

{(
c(K,K ′, A2) +

144

ϕ(S0)2
− LA4

2

)
s0 logM

}
,

where s0 = |Sβ0| and T0 is the event (39). Moreover, both

Eβ0Π

(
β : ∥β − β0∥2,1 ≥

H0(L+ 2)s0
√
logM

∥X∥ϕ̄((L+ 2)s0)2

∣∣∣∣Y) 1T0 ,

Eβ0Π

(
β : ∥β − β0∥2 ≥

H0

√
(L+ 2)s0 logM

∥X∥ϕ̃((L+ 2)s0)2

∣∣∣∣∣Y
)
1T0 ,

satisfy the same inequality.

Proof. Consider the set E = EL = {β ∈ Rp : |Sβ| ≤ (L+ 1)s0}, which satisfies

Eβ0Π(E
c|Y )1T0 ≤ C(K,K ′) exp

{(
c(K,K ′, A2) +

144

ϕ(S0)2
− LA4

2

)
s0 logM

}
(47)

by Lemma 4. Recall that λ∥β0∥2,1 ≤ 2λ̄∥β − β0∥2,1 + λ∥β∥2,1 by (38). Using this, for any

set B ⊆ E and T0 = {maxk ∥XT
Gk
(Y −Xβ0)∥2 ≤ λ̄}, (44) and (45) give

Π(B|Y )1T0 ≤ C
ecs0 logM

s0!πM(s0)

∫
B

1T0e
− 1

2
∥X(β−β0)∥22+3λ̄∥β−β0∥2,1+λ∥β∥2,1dΠ(β).

Note that for any β ∈ E, |Sβ−β0| ≤ |Sβ| + s0 ≤ (L + 2)s0 =: DLs0. Using Definition 2 of
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the uniform compatibility ϕ̄(s),

(4− 1)λ̄∥β − β0∥2,1 ≤
4λ̄∥X(β − β0)∥2|Sβ−β0|1/2

∥X∥ϕ̄(|Sβ−β0|)
− λ̄∥β − β0∥2,1

≤ 1

8
∥X(β − β0)∥22 +

32λ̄2DLs0
∥X∥2ϕ̄(DLs0)2

− λ̄∥β − β0∥2,1.

Thus for any B ⊆ E,

Π(B|Y )1T0 ≤ C
ecs0 logM

s0!πM(s0)
e

32λ̄2DLs0
∥X∥2ϕ̄(DLs0)

2

∫
B

1T0e
− 3

8
∥X(β−β0)∥22−λ̄∥β−β0∥2,1+λ∥β∥2,1dΠ(β).

Note that by (37), πM(s0) ≥ (A1M
−A3)s0πM(0). For B = {β ∈ E : ∥X(β−β0)∥2 ≥ R},

the last display implies

Π(B|Y )1T0 ≤ C
ecs0 logM

s0!A
s0
1 πM(0)

MA3s0e
32λ̄2DLs0

∥X∥2ϕ̄(DLs0)
2 e−3R2/8

∫
B

e−λ̄∥β−β0∥2,1+λ∥β∥2,1dΠ(β).

The last integral is upper bounded by

∑
S:|S|≤(L+1)s0

πM(|S|)(
M
|S|

) ∫
e−λ̄∥β−β0∥2,1

∏
Gk∈S

∆mk
λmkdβGk

=

(L+1)s0∑
s=0

πM(s)
∏
Gk∈S

(λ/λ̄)mk .

Using (37) and (38), the last display is bounded by πM(0)
∑∞

s=0(A2M
−A4)s2mmaxs ≤ πM(0)

∑∞
s=0 4

−s ≤

2πM(0), since 2mmaxA2M
−A4 ≤ 2−mmax+1 ≤ 1/4 by the lemma hypothesis. Setting R2 =

H2
0DLs0 logM/ϕ̄(DLs0)

2 for a constant H0 > 0, the second last display is bounded by

C(K,K ′) exp

{(
c(K,K ′) + A3 −

logA1

logM
+

288DL

ϕ̄(DLs0)2

)
s0 logM −

3

8
R2

}
≤ C exp

{
−
[
3H2

0

8
− 288− c− A3 −

| logA1|
logM

]
DLs0 logM

ϕ̄(DLs0)2

}
,

where we have used that ϕ̄(DLs0) ≤ ϕ̄(1) ≤ 1. Taking H0 large enough depending on

A1, A3, A4 and using again that ϕ̄(DLs0) ≤ 1, the last display can be made smaller than

(47), which is thus the dominant term in the tail probability bound.

For the ∥ · ∥2,1-loss, using Definition 2 of the uniform compatibility, for any β ∈ E,

λ̄∥β − β0∥2,1 ≤
λ̄∥X(β − β0)∥2|Sβ−β0|1/2

∥X∥ϕ̄(|Sβ−β0|)
≤ 1

2

λ̄2DLs0
∥X∥2ϕ̄(DLs0)2

+
1

2
∥X(β − β0)∥22.
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The result then follows from the first assertion for the prediction loss ∥X(β − β0)∥2.

For the ∥ · ∥2-loss, note that ∥X(β − β0)∥2 ≥ ϕ̃(DLs0)∥X∥∥β − β0∥2 for any β ∈ E.

Since ϕ̃(s) ≤ ϕ̄(s) for all s by Lemma 1 of Castillo et al. (2015) (which extends to the group

setting), the result follows.

F.3 DKL-divergence between the variational and true posterior

We next bound the KL-divergence between the variational family and the true posterior

on the following event:

T1 = T1(Γ, ε, κ) = T0∩{Π(β : |Sβ| > Γ|Y ) ≤ 1/4}∩{Π(β : ∥β−β0∥2 > ε|Y ) ≤ e−κ}, (48)

where Γ, κ, ε > 0. The proof largely follows Section B.2 of Ray and Szabó (2022), again

modified to the group sparse setting, which we produce in full for completeness.

Lemma 6. If 4e1+Γ logM−κ ≤ 1, then there exists an element Q ∈ Q ⊂ Q′ of the variational

families such that

DKL(Q||Π(·|Y ))1T1 ≤ Γ

(
logM +mmax log

1

ϕ̃(Γ)

)
+

λΓ

ϕ̃(Γ)2

(
3s

1/2
0 ε+

3
√
logM

∥X∥
+
m

1/2
max

∥X∥

)

+ log(4e).

If Assumption (K) also holds, then

DKL(Q||Π(·|Y ))1T1 ≤ Γ(K + 1) logM log
1

ϕ̃(Γ)
+

λΓ

ϕ̃(Γ)2

(
3s

1/2
0 ε+

(3 +
√
K)
√
logM

∥X∥

)

+ log(4e).

Proof. The full posterior takes the form

Π(·|Y ) =
∑

S:S⊆{1,...,M}

q̂SΠS(·|Y )⊗ δSc , (49)
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with weights 0 ≤ q̂S ≤ 1 satisfying
∑

S q̂S = 1 and where ΠS(·|Y ) denotes the posterior for

βS ∈ R
∑

Gk∈S mk in the restricted model Y = XSβS +Z. Arguing exactly as in the proof of

Lemma B.2 of Ray and Szabó (2022), one has that on T1 and for 4e1+Γ logM−κ ≤ 1, there

exists a set S̃ ⊆ {G1, . . . , GM} such that

|S̃| ≤ Γ, ∥β0,Sc∥2 ≤ ε, q̂S̃ ≥ (2e)−1M−Γ. (50)

Writing p̃ =
∑

Gk∈S̃ mk, consider the element of the variational family

Q̃ =

⊗
Gk∈S̃

Nmk
(µGk

, DGk
)

⊗
⊗

Gk∈S̃c

δGk

 =: Np̃(µS̃, DS̃)⊗ δS̃c (51)

where DGk
are diagonal matrices to be defined below. This is the distribution that assigns

mass one to the model S̃ and then fits an independent normal distribution with diagonal

covariance on each of the groups in S̃. Since Q̃ is only absolutely continuous with respect

to the q̂S̃ΠS̃(·|Y )⊗ δS̃c component of the posterior (49),

inf
Q∈Q

DKL(Q∥Π(·|Y )) ≤ DKL(Q̃∥Π(·|Y ) = Eβ∼Q̃

[
log

dNp̃(µS̃, DS̃)⊗ δS̃c

q̂S̃dΠS̃(·|Y )⊗ δS̃c

(β)

]
= log

1

q̂S̃
+DKL(Np̃(µS̃, DS̃)∥ΠS̃(·|Y )).

(52)

On T1, the first term is bounded by log(2eMΓ) by (50), so that it remains to bound the

second term in (52).

Define

µS̃ = (XT
S̃
XS̃)

−1XT
S̃
Y, DS̃ = diag((DGk

)Gk∈S̃), ΣS̃ = (XT
S̃
XS̃)

−1, (53)

where DGk
∈ Rmk×mk , Gk ∈ S̃, is the diagonal matrix with entries

(DGk
)ii =

1

(XT
Gk
XGk

)ii
, i = 1, . . . ,mk.

Writing EµS̃ ,DS̃
for the expectation under the distribution βS̃ ∼ Np̃(µS̃, DS̃),

DKL(Np̃(µS̃, DS̃)∥ΠS̃(·|Y )) = EµS̃ ,DS̃

[
log

dNp̃(µS̃, DS̃)

dNp̃(µS̃,ΣS̃)
+ log

dNp̃(µS̃,ΣS̃)

dΠS̃(·|Y )

]
=: (I) + (II).

(54)
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We next deal with each term separately.

Term (I) in (54). Using the formula for the Kullback-Leibler divergence between two

multivariate Gaussian distributions,

(I) = DKL(Np̃(µS̃, DS̃)∥Np̃(µS̃,ΣS̃)) =
1
2

(
Tr(Σ−1

S̃
DS̃)− p̃+ log(|ΣS̃|/|DS̃|)

)
,

where |A| denotes the determinant of a square matrix A. Further define the matrix

VS̃ = diag(((XT
Gk
XGk

)−1)Gk∈S̃),

which is a block-diagonalization of ΣS̃ = (XT
S̃
XS̃)

−1. Let S̃ = {Gk1 , . . . , Gks} for s = |S̃|.

By considering multiplication along the block structure, Σ−1

S̃
VS̃ has (i, j)th-block equal to

(XT
Gki
XGkj

)(XT
Gkj

XGkj
)−1, i, j = 1, . . . , s. Furthermore, V −1

S̃
DS̃ is a block-diagonal matrix

with (i, i)th-block (XT
Gki
XGki

)DGki
, i = 1, . . . , s. Thus, by considering the block-diagonal

terms,

Tr(Σ−1

S̃
DS̃) = Tr(Σ−1

S̃
VS̃V

−1

S̃
DS̃) = Tr

(
diag((XT

Gki
XGk

DGk
)Gk∈S̃)

)
=
∑
Gk∈S̃

Tr
(
XT

Gki
XGki

DGki

)
=
∑
Gk∈S̃

mk = p̃,

and hence (I) = 1
2
log(|ΣS̃||D

−1

S̃
|). Using (53),

|D−1

S̃
| =

∏
Gk∈S̃

∏
i∈Gk

(XT
Gk
XGk

)ii ≤
∏
Gk∈S̃

∥X∥2mk = ∥X∥2p̃.

Let λmax(A) and λmin(A) denote the largest and smallest eigenvalues, respectively, of a ma-

trix A. Arguing as in equation (B.12) in Ray and Szabó (2022), for any S ⊆ {G1, . . . , GM},

λmin(X
T
SXS) ≥ ∥X∥2ϕ̃(|S|)2. (55)

Therefore,

|ΣS̃| = 1/|XT
S̃
XS̃| ≤ 1/λmin(X

T
S̃
XS̃)

p̃ ≤ 1/(∥X∥ϕ̃(|S̃|))2p̃,
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and hence (I) = 1
2
log(|ΣS̃||D

−1

S̃
|) ≤ p̃ log(1/ϕ̃(|S̃|)) ≤ mmaxΓ log(1/ϕ̃(Γ)) using (50).

Term (II) in (54). One can check that the Np̃(µS̃,ΣS̃) distribution has density function

proportional to e−
1
2
∥Y−XS̃βS̃∥

2
2 for βS̃ ∈ Rp̃. Therefore,

(II) = EµS̃ ,DS̃

[
log

DΠe
− 1

2
∥Y−XS̃βS̃∥

2
2−λ∥β0,S̃∥2,1

DNe
− 1

2
∥Y−XS̃βS̃∥

2
2−λ∥βS̃∥2,1

]

= log(DΠ/DN) + λEµS̃ ,DS̃
(∥βS̃∥2,1 − ∥β0,S̃∥2,1),

where DΠ =
∫
Rp̃ e

− 1
2
∥Y−XS̃βS̃∥

2
2−λ∥βS̃∥2,1dβS̃ and DN =

∫
Rp̃ e

− 1
2
∥Y−XS̃βS̃∥

2
2−λ∥β0,S̃∥2,1dβS̃ are the

normalizing constants for the densities. Arguing exactly as in the proof of Lemma B.2 of

Ray and Szabó (2022), one can show that on the event T1 is holds that log(DΠ/DN) ≤

2λΓ1/2ε + log 2 if 4e1+Γ logM−κ ≤ 1. On T1, the second term in the last display is bounded

by

λEµS̃ ,DS̃
∥βS̃ − β0,S̃∥2,1 ≤ λ|S̃|1/2EµS̃ ,DS̃

∥βS̃ − β0,S̃∥2

≤ λΓ1/2
(
∥µS̃ − β0,S̃∥2 + E0,DS̃

∥βS̃∥2
) (56)

using Cauchy-Schwarz.

Under Pβ0 , so that Y =d Xβ0 + ε, and using (53),

∥µS̃ − β0,S̃∥2 ≤ ∥(X
T
S̃
XS̃)

−1XT
S̃
XS̃cβ0,S̃c∥2 + ∥(XT

S̃
XS̃)

−1XT
S̃
ε∥2.

Arguing for this term as in Lemma B.2 of Ray and Szabó (2022), one can show that the first

term is bounded by Γ1/2s
1/2
0 ε/ϕ̃(|S̃|)2 on T1. Using that the ℓ2-operator norm of (XT

S̃
XS̃)

−1

is bounded by 1/(∥X∥ϕ̃(|S̃|))2 by (55), the second term in the last display is bounded by

∥XT
S̃
ε∥2/(∥X∥2ϕ̃(|S̃|)2). But on T1 ⊂ T0,

∥XT
S̃
ε∥22 =

∑
Gk∈S̃

∥XT
Gk
(Y −Xβ0)∥22 ≤ 9|S̃|∥X∥2 logM.

Combining the above bounds thus yields

∥µS̃ − β0,S̃∥2 ≤
Γ1/2s

1/2
0 ε

ϕ̃(Γ)2
+

3Γ1/2
√
logM

∥X∥ϕ̃(|S̃|)2
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on T1, thereby controlling the first term in (56).

It remains only to bound the second term in (56). Let ei denote the ith unit vector in

Rmk , i = 1, . . . ,mk, and let ēi denote its extension to Rp̃ with unit entry in the ith coordinate

of group Gk. Then (XT
Gk
XGk

)ii = ∥XGk
ei∥22 = ∥Xēi∥22 ≥ ∥X∥2ϕ̃(1)2 for i = 1, . . . ,mk.

Therefore,

E0,DS̃
∥βS̃∥

2
2 = Tr(DS̃) =

∑
Gk∈S̃

∑
i∈Gk

1

(XT
S̃
XS̃)ii

≤ p̃

∥X∥2ϕ̃(1)2
.

Putting together of all the above bounds yields

(II) ≤ 2λΓ1/2ε+ log 2 +
λΓ

ϕ̃(Γ)2

(
s
1/2
0 ε+

3
√
logM

∥X∥
+
m

1/2
max

∥X∥

)
,

using that p̃ ≤ mmax|S̃|, |S̃| ≤ Γ and ϕ̃(|S̃|) ≤ ϕ̃(1) ≤ 1 for S̃ ̸= ∅.

Substituting the bounds for (I) and (II) just derived into (52) and (54) then gives the

first result. The second result follows from using that mmax ≤ K logM under Assumption

(K).

F.4 Proofs of Theorems 3 and 4

To complete the proofs, we apply Lemma 1 with the event T1 defined in (48) for suitably

chosen constants Γ, ε, κ > 0.

Lemma 7. Suppose that Assumption (K) holds, the prior satisfies (37)-(38) and sn satisfies

mmax log sn ≤ K ′ logM for some K ′ > 0. Then

inf
β0∈Rp:ϕ(Sβ0

)≥c0
|Sβ0

|≤sn

Pβ0(T1(Γs0 , εs0 , κs0))→ 1

as n→∞, where

Γs0 = CΓs0, εs0 = Cε

√
s0 logM

∥X∥ϕ̃(Cϕs0)
, κs0 = (CΓs0 + 1) logM, (57)
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and the constants have dependence CΓ = CΓ(K,K
′, A2, A4, c0), Cε = Cε(K,K

′, A1−A4, c0)

and Cϕ = Cϕ(K,K
′, A2, A4, c0). Moreover, 4e1+Γs0 logM−κs0 ≤ 1 for M > 0 large enough.

Proof. We consider each of the sets in T1 individually. In what follows, C = C(K,K ′) and

c = c(K,K ′, A2) will be constants that may change line-by-line but which will not depend

on other parameters.

Applying Lemma 4 with L = 2
A4
(1 + logC + c + 144/c20), where C, c are the constants

in that lemma, we have Eβ0Π(β : |Sβ| > (L + 1)s0|Y )1T0 ≤ e−s0 logM ≤ 1/4 for M large

enough. Setting CΓ = L+ 1, the second event in T1 is thus a subset of T0 for Γ = Γs0 and

all β0 in the infimum in the lemma.

For the third event in T1, we apply Lemma 5 with L = 2
A4
(1+ logC + c+144/c20+CΓ),

where now C, c are the constants in Lemma 5, to obtain

Eβ0Π

(
β : ∥β − β0∥2 ≥

H0

√
(L+ 2)s0 logM

∥X∥ϕ̃((L+ 2)s0)2

∣∣∣∣∣Y
)
1T0 ≤ e−κs0 .

Setting Cε = H0

√
L+ 2 and Cϕ = L+ 2 shows that the third event in T1 is also contained

in T0 for these choices and all β0 in the infimum in the lemma. It thus suffices to control

the probability of T0, with tends to one uniformly in β0 ∈ Rp by Lemma 2. Lastly, note

that 4e1+Γs0 logM−κs0 = 4e1−logM ≤ 1 for M large enough.

Proof of Theorem 3. Write Bn = Bρn,sn = {β0 ∈ Rp : ϕ(Sβ0) ≥ c0, |Sβ0| ≤ sn, ϕ̃(ρn|Sβ0 |) ≥

c0} for the parameter set and let

Ωn =

{
β : ∥X(β − β0)∥2 ≤

H0ρ
1/2
n

√
s0 logM

ϕ̄(ρns0)

}

forH0 = H0(A1, A3, A4) > 0 the constant in Lemma 5. Let T1 = T1 = T1(Γs0 , εs0 , κs0) be the

event (48) with parameters (57), so that Lemma 7 gives Eβ0Π̃(Ω
c
n) = Eβ0Π̃(Ω

c
n)1T1 + o(1),

uniformly over β0 ∈ Bn.
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Applying Lemma 5 with L+2 = ρn →∞ gives that for n large enough, Eβ0Π(Ω
c
n|Y )1T0 ≤

Ce−cρns0 logM , where C, c depend only on K,K ′, A2, A4, c0. We can then use Lemma 1 with

event An = T1 ⊂ T0 and δn = cρns0 logM to obtain

Eβ0Π̃(Ω
c
n)1T1 ≤

2

cρns0 logM

[
DKL(Π̃∥Π(·|Y ))1T1 + C−cρns0 logM

]
.

Since ρns0 logM → ∞ and Π̃ is by definition the KL-minimizer of the variational family

to the posterior, we obtain that for any Q ∈ Q,

Eβ0Π̃(Ω
c
n) ≤

2

cρns0 logM
DKL(Q∥Π(·|Y ))1T1 + o(1),

where the o(1) term is uniform over β0 ∈ Bn. But by Lemma 6, there exists an element

Q ∈ Q of the variational family such that

DKL(Q∥Π(·|Y ))1T1 ≤ C

(
log

1

ϕ̃(CΓs0)
+

1

ϕ̃(CΓs0)2ϕ̃(Cϕs0)

)
s0 logM,

where C is uniform over β0 ∈ Bn and CΓ, Cϕ have dependences specified in Lemma 7. But

since CΓ, Cϕ are bounded under the hypothesis of the present theorem and ρn → ∞, we

have ρn ≥ CΓ, Cϕ for n large enough and hence ϕ̃(CΓs0), ϕ̃(Cϕs0) ≥ ϕ̃(ρns0) ≥ c0. Using

this and the last two displays, we thus have

sup
β0∈Bn

Eβ0Π̃(Ω
c
n) ≤ C/ρn + o(1) = o(1)

as n → ∞, thereby establishing the first assertion. The second two assertions follow

similarly for using the corresponding results in Lemma 5.

Proof of Theorem 4. The proof follows similarly to the proof of Theorem 3, using Lemma

4 to control the probability of the posterior set instead of Lemma 5.
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